|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return grad_all(self.network)(x, y, b)
-
-
- def compile_net(net, x, y, b):
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x, y, b)
-
-
- # it has not redistribution
- def test_tensoradd_reshape_matmul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.add = P.TensorAdd().shard(strategy1)
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().shard(strategy2)
-
- def construct(self, x, y, b):
- out = self.add(x, y)
- out = self.reshape(out, (256, 16))
- out = self.matmul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
- strategy1 = ((8, 1, 1), (8, 1, 1))
- strategy2 = ((8, 1), (1, 8))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- context.set_context(save_graphs=True)
-
- x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
- y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
- b = Tensor(np.ones([16, 16]), dtype=ms.float32)
-
- compile_net(net, x, y, b)
-
-
- def test_two_matmul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul1 = P.MatMul().shard(strategy1)
- self.matmul2 = P.MatMul().shard(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul1(x, y)
- out = self.matmul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
- strategy1 = ((8, 8), (8, 1))
- strategy2 = ((8, 1), (1, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- context.set_context(save_graphs=True)
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
-
- compile_net(net, x, y, b)
|