|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import context
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter
- from mindspore.common.initializer import initializer
- from mindspore.train.model import Model
-
-
- class DatasetLenet():
- def __init__(self, data, label, length=3):
- self.data = data
- self.label = label
- self.index = 1
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.data, self.label
-
- def reset(self):
- self.index = 0
-
- def get_dataset_size(self):
- return 32
-
- def get_repeat_count(self):
- return 1
-
- def get_batch_size(self):
- return 32
-
- def create_tuple_iterator(self, num_epochs=1, do_copy=True):
- return self
-
-
- class MatMulCell(nn.Cell):
- def __init__(self, strategy1, strategy2, param=None):
- super().__init__()
- self.param = Parameter(initializer("zeros", [64, 64]), name="param")
- if param is not None:
- self.param = param
- self.param1 = Parameter(initializer("zeros", [64, 64]), name="param1")
- self.matmul = P.MatMul().shard(strategy1)
- self.matmul1 = P.MatMul().shard(strategy2)
-
- def construct(self, x):
- out = self.matmul(x, self.param)
- out = self.matmul1(out, self.param1)
- return out
-
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, param=None):
- super().__init__()
- self.block = nn.CellList()
- for i in range(2):
- cell = MatMulCell(strategy1, strategy2, param)
- cell.stage = i
- self.block.append(cell)
-
- def construct(self, x):
- for i in range(2):
- x = self.block[i](x)
- return x
-
-
- class PipelineSplit(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.cell = Net(strategy1, strategy2)
-
- def construct(self, x, label):
- x = self.cell(x)
- return x
-
-
- class PipelineSplit2(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.param = Parameter(initializer("zeros", [64, 64]), name="param")
- self.cell = Net(strategy1, strategy2, self.param)
-
- def construct(self, x, label):
- x = self.cell(x)
- return x
-
-
- def test_pipeline_split_stage0():
- context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- data = Tensor(np.ones([32, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64, 64]), dtype=ms.float32)
- strategy1 = ((4, 1), (1, 1))
- strategy2 = ((2, 1), (1, 1))
- net = PipelineSplit(strategy1, strategy2)
- params = net.cell.block[0].trainable_params()
- dataset = DatasetLenet(data, label, 3)
- optimizer = nn.Lamb(params, learning_rate=0.01)
- model = Model(net, optimizer=optimizer)
- model.train(2, dataset, dataset_sink_mode=False)
-
-
- def test_pipeline_split_stage1():
- context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- data = Tensor(np.ones([32, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64, 64]), dtype=ms.float32)
- strategy1 = ((4, 1), (1, 1))
- strategy2 = ((2, 1), (1, 1))
- net = PipelineSplit(strategy1, strategy2)
- params = net.cell.block[1].trainable_params()
- dataset = DatasetLenet(data, label, 3)
- optimizer = nn.Lamb(params, learning_rate=0.01)
- model = Model(net, optimizer=optimizer)
- model.train(2, dataset, dataset_sink_mode=False)
-
-
- def test_pipeline_split_shared_parameter_stage0():
- context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- data = Tensor(np.ones([32, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64, 64]), dtype=ms.float32)
- strategy1 = ((4, 1), (1, 1))
- strategy2 = ((2, 1), (1, 1))
- net = PipelineSplit2(strategy1, strategy2)
- params = net.cell.block[0].trainable_params()
- dataset = DatasetLenet(data, label, 3)
- optimizer = nn.Lamb(params, learning_rate=0.01)
- model = Model(net, optimizer=optimizer)
- model.train(2, dataset, dataset_sink_mode=False)
-
-
- def test_pipeline_split_shared_parameter_stage1():
- context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- data = Tensor(np.ones([32, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64, 64]), dtype=ms.float32)
- strategy1 = ((4, 1), (1, 1))
- strategy2 = ((2, 1), (1, 1))
- net = PipelineSplit2(strategy1, strategy2)
- params = net.cell.block[1].trainable_params()
- dataset = DatasetLenet(data, label, 3)
- optimizer = nn.Lamb(params, learning_rate=0.01)
- model = Model(net, optimizer=optimizer)
- model.train(2, dataset, dataset_sink_mode=False)
|