|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.parameter import Parameter
- from mindspore.common import dtype as mstype
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- import mindspore.nn as nn
- from mindspore.train import Model
- from mindspore.context import ParallelMode
- from tests.dataset_mock import MindData
-
-
- GRADIENT_CLIP_TYPE = 1
- GRADIENT_CLIP_VALUE = 1.0
- clip_grad = C.MultitypeFuncGraph("clip_grad")
- grad_scale = C.MultitypeFuncGraph("grad_scale")
- reciprocal = P.Reciprocal()
-
-
- @grad_scale.register("Tensor", "Tensor")
- def tensor_grad_scale(scale, grad):
- return grad * reciprocal(scale)
-
-
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=65536, scale_factor=2, scale_window=1000)
-
-
- @clip_grad.register("Number", "Number", "Tensor")
- def _clip_grad(clip_type, clip_value, grad):
- dt = F.dtype(grad)
- if clip_type == 0:
- new_grad = C.clip_by_value(grad, F.cast(F.tuple_to_array((-clip_value,)), dt),
- F.cast(F.tuple_to_array((clip_value,)), dt))
- else:
- new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
- return new_grad
-
-
- class TrainOneStepWithLossScaleCell(nn.Cell):
- def __init__(self, network, optimizer, scale_update_cell=None):
- super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False)
- self.network = network
- self.weights = optimizer.parameters
- self.optimizer = optimizer
- self.grad = C.GradOperation(get_by_list=True,
- sens_param=True)
- self.reducer_flag = False
- self.grad_reducer = F.identity
- self.cast = P.Cast()
- self.alloc_status = P.NPUAllocFloatStatus()
- self.get_status = P.NPUGetFloatStatus()
- self.clear_before_grad = P.NPUClearFloatStatus()
- self.reduce_sum = P.ReduceSum(keep_dims=False)
- self.depend_parameter_use = P.ControlDepend(depend_mode=1)
- self.base = Tensor(1, mstype.float32)
- self.less_equal = P.LessEqual()
- self.hyper_map = C.HyperMap()
- self.loss_scale = None
- self.loss_scaling_manager = scale_update_cell
- if scale_update_cell:
- self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
- name="loss_scale")
-
- @C.add_flags(has_effect=True)
- def construct(self, x, sens=None):
- """Defines the computation performed."""
- weights = self.weights
- loss = self.network(x)
- if sens is None:
- scaling_sens = self.loss_scale
- else:
- scaling_sens = sens
- # alloc status and clear should be right before gradoperation
- init = self.alloc_status()
- self.clear_before_grad(init)
- grads = self.grad(self.network, weights)(x, self.cast(scaling_sens, mstype.float32))
- # apply grad reducer on grads
- grads = self.grad_reducer(grads)
- grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
- self.get_status(init)
- flag_sum = self.reduce_sum(init, (0,))
- cond = self.less_equal(self.base, flag_sum)
- overflow = cond
- if sens is None:
- overflow = self.loss_scaling_manager(self.loss_scale, cond)
- if overflow:
- succ = False
- else:
- succ = self.optimizer(grads)
- ret = (loss, cond, scaling_sens)
- return F.depend(ret, succ)
-
-
- class DatasetLenet(MindData):
- def __init__(self, predict, label, length=3):
- super(DatasetLenet, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class LoopLayer(nn.Cell):
- def __init__(self):
- super(LoopLayer, self).__init__()
- self.matmul = P.MatMul()
- self.relu = P.ReLU()
- self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- out = self.matmul(x, self.matmul_weight)
- out = self.relu(out)
- return out
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.exp = P.Exp()
- self.mean = P.ReduceMean()
- layers = []
- for _ in range(3):
- layer = LoopLayer()
- layers.append(layer)
- self.layers = nn.CellList(layers)
-
- def construct(self, x):
- out = self.exp(x)
- for layer in self.layers:
- layer_out = layer(out)
- out = layer_out
- out = self.mean(out, -1)
- return out
-
-
- class Net2(nn.Cell):
- def __init__(self):
- super(Net2, self).__init__()
- self.matmul = P.MatMul()
- self.relu = P.ReLU()
- self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
-
- def construct(self, x, b):
- out = self.matmul(x, self.matmul_weight)
- out = self.relu(out)
- return out
-
-
- def test_loss_scale():
- context.set_context(mode=context.GRAPH_MODE)
- context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
- predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64,]), dtype=ms.int32)
- dataset = DatasetLenet(predict, label)
- net = Net()
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
- net = TrainOneStepWithLossScaleCell(net, opt, update_cell)
- model = Model(network=net)
- model.train(2, dataset, dataset_sink_mode=False)
-
-
- def test_loss_scale2():
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
- predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
- label = Tensor(np.ones([64,]), dtype=ms.int32)
- dataset = DatasetLenet(predict, label)
- net = Net2()
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
- net = nn.TrainOneStepWithLossScaleCell(net, opt, update_cell)
- model = Model(network=net)
- model.train(2, dataset, dataset_sink_mode=False)
|