|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.common.parameter import Parameter
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from mindspore.common.initializer import initializer
- from mindspore.nn import TrainOneStepCell, Momentum
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x):
- predict = self.network(x)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x):
- return grad_all(self.network)(x)
-
- def test_unique_column_split():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.unique = P.Unique().shard(((1,),))
- self.relu = P.ReLU()
- self.mul = P.Mul()
- self.embedding_lookp = P.GatherV2().shard(((1, 8), (1,)))
- self.embedding_table = Parameter(initializer('normal', [2000, 128]),
- name='embedding_table')
- self.gatherv2 = P.GatherV2().shard(((1, 8), (1,)))
- self.reshape = P.Reshape()
- self.matmul = P.MatMul()
- self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
-
- def construct(self, indices):
- indices_flatten = self.reshape(indices, (-1,))
- unique_id, unique_idx = self.unique(indices_flatten)
- unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
- weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
- weight = self.reshape(weight_flatten, (32, 64, 128))
- vx = self.mul(weight, self.mul_weight)
- return vx
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="auto_parallel")
- x = Tensor(np.ones([32, 64]), dtype=ms.int32)
- net = Net()
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, x)
-
- def test_unique_row_split():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.unique = P.Unique().shard(((1,),))
- self.relu = P.ReLU()
- self.mul = P.Mul()
- self.embedding_lookp = P.GatherV2().shard(((8, 1), (1,)))
- self.embedding_table = Parameter(initializer('normal', [2000, 128]),
- name='embedding_table')
- self.gatherv2 = P.GatherV2().shard(((1, 1), (1,)))
- self.reshape = P.Reshape()
- self.matmul = P.MatMul()
- self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
-
- def construct(self, indices):
- indices_flatten = self.reshape(indices, (-1,))
- unique_id, unique_idx = self.unique(indices_flatten)
- unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
- weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
- weight = self.reshape(weight_flatten, (32, 64, 128))
- vx = self.mul(weight, self.mul_weight)
- return vx
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="semi_auto_parallel")
- x = Tensor(np.ones([32, 64]), dtype=ms.int32)
- net = Net()
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, x)
|