|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore as ms
- import mindspore.context as context
- from mindspore import Tensor, Parameter
- import mindspore.nn as nn
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, Momentum
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True):
- super(Net, self).__init__()
- self.shape = (8, 48, 64)
- self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- if is_parameter:
- self.weight1 = Parameter(weight1, "w1")
- else:
- self.weight1 = weight1
-
- def construct(self, x):
- out = self.broadcast(self.weight1)
- out = self.mul(x, out)
- return out
-
-
- class MatMulNet(nn.Cell):
- def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True):
- super(MatMulNet, self).__init__()
- self.shape = (8, 64, 64)
- self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
- self.matmul = P.BatchMatMul().shard(strategy2)
- self.mul = P.Mul().shard(strategy3)
- if is_parameter:
- self.weight1 = Parameter(weight1, "w1")
- else:
- self.weight1 = weight1
-
- def construct(self, x1, x2):
- out = self.broadcast(x2)
- out = self.matmul(x1, out)
- out = self.mul(out, self.weight1)
- return out
-
-
- _w1 = Tensor(np.ones([1, 48, 64]), dtype=ms.float32)
- _x1 = Tensor(np.ones([8, 48, 64]), dtype=ms.float32)
- _x2 = Tensor(np.ones([64, 64]), dtype=ms.float32)
-
-
- def compile_net(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x1)
- context.reset_auto_parallel_context()
-
-
- def compile_net2(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x1, _x2)
- context.reset_auto_parallel_context()
-
-
- def test_BroadcastTo_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 4, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_BroadcastTo_parameter_no_full():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 2, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_BroadcastTo_auto_parallel():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net(_w1)
- compile_net(net)
-
-
- def test_BroadcastTo_matmul():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 4),)
- strategy2 = ((1, 1, 2), (1, 2, 4))
- strategy3 = ((1, 2, 4), (1, 2, 4))
- net = MatMulNet(_w1, strategy1, strategy2, strategy3)
- compile_net2(net)
|