|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """YOLOV4 loss."""
- from mindspore.ops import operations as P
- import mindspore.nn as nn
-
-
- class XYLoss(nn.Cell):
- """Loss for x and y."""
- def __init__(self):
- super(XYLoss, self).__init__()
- self.cross_entropy = P.SigmoidCrossEntropyWithLogits()
- self.reduce_sum = P.ReduceSum()
-
- def construct(self, object_mask, box_loss_scale, predict_xy, true_xy):
- xy_loss = object_mask * box_loss_scale * self.cross_entropy(predict_xy, true_xy)
- xy_loss = self.reduce_sum(xy_loss, ())
- return xy_loss
-
-
- class WHLoss(nn.Cell):
- """Loss for w and h."""
- def __init__(self):
- super(WHLoss, self).__init__()
- self.square = P.Square()
- self.reduce_sum = P.ReduceSum()
-
- def construct(self, object_mask, box_loss_scale, predict_wh, true_wh):
- wh_loss = object_mask * box_loss_scale * 0.5 * P.Square()(true_wh - predict_wh)
- wh_loss = self.reduce_sum(wh_loss, ())
- return wh_loss
-
-
- class ConfidenceLoss(nn.Cell):
- """Loss for confidence."""
- def __init__(self):
- super(ConfidenceLoss, self).__init__()
- self.cross_entropy = P.SigmoidCrossEntropyWithLogits()
- self.reduce_sum = P.ReduceSum()
-
- def construct(self, object_mask, predict_confidence, ignore_mask):
- confidence_loss = self.cross_entropy(predict_confidence, object_mask)
- confidence_loss = object_mask * confidence_loss + (1 - object_mask) * confidence_loss * ignore_mask
- confidence_loss = self.reduce_sum(confidence_loss, ())
- return confidence_loss
-
-
- class ClassLoss(nn.Cell):
- """Loss for classification."""
- def __init__(self):
- super(ClassLoss, self).__init__()
- self.cross_entropy = P.SigmoidCrossEntropyWithLogits()
- self.reduce_sum = P.ReduceSum()
-
- def construct(self, object_mask, predict_class, class_probs):
- class_loss = object_mask * self.cross_entropy(predict_class, class_probs)
- class_loss = self.reduce_sum(class_loss, ())
- return class_loss
|