|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset as ds
- from mindspore import log as logger
- import numpy as np
-
-
- # test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631]
- # the label of each image is [0,0,0,1,1] each image can be uniquely identified
- # via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
-
- def test_sequential_sampler(print_res=False):
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
- map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
-
- def test_config(num_samples, num_repeats=None):
- sampler = ds.SequentialSampler()
- data1 = ds.ManifestDataset(manifest_file, num_samples=num_samples, sampler=sampler)
- if num_repeats is not None:
- data1 = data1.repeat(num_repeats)
- res = []
- for item in data1.create_dict_iterator():
- logger.info("item[image].shape[0]: {}, item[label].item(): {}"
- .format(item["image"].shape[0], item["label"].item()))
- res.append(map[(item["image"].shape[0], item["label"].item())])
- if print_res:
- logger.info("image.shapes and labels: {}".format(res))
- return res
-
- assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2]
- assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2
- assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2
-
-
- def test_random_sampler(print_res=False):
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
- map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
-
- def test_config(replacement, num_samples, num_repeats):
- sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
- data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
- data1 = data1.repeat(num_repeats)
- res = []
- for item in data1.create_dict_iterator():
- res.append(map[(item["image"].shape[0], item["label"].item())])
- if print_res:
- logger.info("image.shapes and labels: {}".format(res))
- return res
-
- # this tests that each epoch COULD return different samples than the previous epoch
- assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2
- # the following two tests test replacement works
- ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]
- assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res
- assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res
-
-
- def test_random_sampler_multi_iter(print_res=False):
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
- map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
-
- def test_config(replacement, num_samples, num_repeats, validate):
- sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
- data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
- while num_repeats > 0:
- res = []
- for item in data1.create_dict_iterator():
- res.append(map[(item["image"].shape[0], item["label"].item())])
- if print_res:
- logger.info("image.shapes and labels: {}".format(res))
- if validate != sorted(res):
- break
- num_repeats -= 1
- assert num_repeats > 0
-
- test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5])
-
-
- def test_sampler_py_api():
- sampler = ds.SequentialSampler().create()
- sampler.set_num_rows(128)
- sampler.set_num_samples(64)
- sampler.initialize()
- sampler.get_indices()
-
- sampler = ds.RandomSampler().create()
- sampler.set_num_rows(128)
- sampler.set_num_samples(64)
- sampler.initialize()
- sampler.get_indices()
-
- sampler = ds.DistributedSampler(8, 4).create()
- sampler.set_num_rows(128)
- sampler.set_num_samples(64)
- sampler.initialize()
- sampler.get_indices()
-
-
- def test_python_sampler():
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
- map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
-
- class Sp1(ds.Sampler):
- def __iter__(self):
- return iter([i for i in range(self.dataset_size)])
-
- class Sp2(ds.Sampler):
- def __init__(self):
- super(Sp2, self).__init__()
- # at this stage, self.dataset_size and self.num_samples are not yet known
- self.cnt = 0
-
- def __iter__(self): # first epoch, all 0, second epoch all 1, third all 2 etc.. ...
- return iter([self.cnt for i in range(self.num_samples)])
-
- def reset(self):
- self.cnt = (self.cnt + 1) % self.dataset_size
-
- def test_config(num_samples, num_repeats, sampler):
- data1 = ds.ManifestDataset(manifest_file, num_samples=num_samples, sampler=sampler)
- if num_repeats is not None:
- data1 = data1.repeat(num_repeats)
- res = []
- for item in data1.create_dict_iterator():
- logger.info("item[image].shape[0]: {}, item[label].item(): {}"
- .format(item["image"].shape[0], item["label"].item()))
- res.append(map[(item["image"].shape[0], item["label"].item())])
- # print(res)
- return res
-
- def test_generator():
- class MySampler(ds.Sampler):
- def __iter__(self):
- for i in range(99, -1, -1):
- yield i
-
- data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler = MySampler())
- i = 99
- for data in data1:
- assert data[0] == (np.array(i),)
- i = i - 1
-
- assert test_config(5, 2, Sp1()) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
- assert test_config(2, 6, Sp2()) == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0]
- test_generator()
-
- sp1 = Sp1().create()
- sp1.set_num_rows(5)
- sp1.set_num_samples(5)
- sp1.initialize()
- assert list(sp1.get_indices()) == [0, 1, 2, 3, 4]
-
-
- if __name__ == '__main__':
- test_sequential_sampler(True)
- test_random_sampler(True)
- test_random_sampler_multi_iter(True)
- test_sampler_py_api()
- test_python_sampler()
|