|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing the rescale op in DE
- """
- import matplotlib.pyplot as plt
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import numpy as np
-
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def rescale_np(image):
- """
- Apply the rescale
- """
- image = image / 255.0
- image = image - 1.0
- return image
-
-
- def get_rescaled(image_id):
- """
- Reads the image using DE ops and then rescales using Numpy
- """
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- num_iter = 0
- for item in data1.create_dict_iterator():
- image = item["image"]
- if num_iter == image_id:
- return rescale_np(image)
- num_iter += 1
-
- return None
-
-
- def visualize(image_de_rescaled, image_np_rescaled, mse):
- """
- visualizes the image using DE op and Numpy op
- """
- plt.subplot(131)
- plt.imshow(image_de_rescaled)
- plt.title("DE rescale image")
-
- plt.subplot(132)
- plt.imshow(image_np_rescaled)
- plt.title("Numpy rescaled image")
-
- plt.subplot(133)
- plt.imshow(image_de_rescaled - image_np_rescaled)
- plt.title("Difference image, mse : {}".format(mse))
- plt.show()
-
-
- def test_rescale_op():
- """
- Test rescale
- """
- logger.info("Test rescale")
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- # define map operations
- decode_op = vision.Decode()
- rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=rescale_op)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- image_de_rescaled = item["image"]
- image_np_rescaled = get_rescaled(num_iter)
- diff = image_de_rescaled - image_np_rescaled
- mse = np.sum(np.power(diff, 2))
- logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
- # Uncomment below line if you want to visualize images
- # visualize(image_de_rescaled, image_np_rescaled, mse)
- num_iter += 1
-
-
- if __name__ == "__main__":
- test_rescale_op()
|