|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomRotation op in DE
- """
- import cv2
- import matplotlib.pyplot as plt
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def visualize(a, mse, original):
- """
- visualizes the image using DE op and enCV
- """
- plt.subplot(141)
- plt.imshow(original)
- plt.title("Original image")
-
- plt.subplot(142)
- plt.imshow(a)
- plt.title("DE random_crop_and_resize image")
-
- plt.subplot(143)
- plt.imshow(a - original)
- plt.title("Difference image, mse : {}".format(mse))
- plt.show()
-
-
- def diff_mse(in1, in2):
- mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
- return mse * 100
-
-
- def test_random_rotation_op():
- """
- Test RandomRotation op
- """
- logger.info("test_random_rotation_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- decode_op = c_vision.Decode()
- # use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
- random_rotation_op = c_vision.RandomRotation((90, 90), expand=True)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- if num_iter > 0:
- break
- rotation = item1["image"]
- original = item2["image"]
- logger.info("shape before rotate: {}".format(original.shape))
- original = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
- diff = rotation - original
- mse = np.sum(np.power(diff, 2))
- logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
- assert mse == 0
- # Uncomment below line if you want to visualize images
- # visualize(rotation, mse, original)
- num_iter += 1
-
-
- def test_random_rotation_expand():
- """
- Test RandomRotation op
- """
- logger.info("test_random_rotation_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c_vision.Decode()
- # use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
- random_rotation_op = c_vision.RandomRotation((0, 90), expand=True)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- rotation = item["image"]
- logger.info("shape after rotate: {}".format(rotation.shape))
- num_iter += 1
-
-
- def test_rotation_diff():
- """
- Test Rotation op
- """
- logger.info("test_random_rotation_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c_vision.Decode()
-
- rotation_op = c_vision.RandomRotation((45, 45), expand=True)
- ctrans = [decode_op,
- rotation_op
- ]
-
- data1 = data1.map(input_columns=["image"], operations=ctrans)
-
- # Second dataset
- transforms = [
- py_vision.Decode(),
- py_vision.RandomRotation((45, 45), expand=True),
- py_vision.ToTensor(),
- ]
- transform = py_vision.ComposeOp(transforms)
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- num_iter += 1
- c_image = item1["image"]
- py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
-
- logger.info("shape of c_image: {}".format(c_image.shape))
- logger.info("shape of py_image: {}".format(py_image.shape))
-
- logger.info("dtype of c_image: {}".format(c_image.dtype))
- logger.info("dtype of py_image: {}".format(py_image.dtype))
-
-
- if __name__ == "__main__":
- test_random_rotation_op()
- test_random_rotation_expand()
- test_rotation_diff()
|