|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- This is the test module for mindrecord
- """
- import collections
- import json
- import os
- import re
- import string
-
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import numpy as np
- import pytest
- from mindspore.dataset.transforms.vision import Inter
- from mindspore import log as logger
-
- import mindspore.dataset as ds
- from mindspore.mindrecord import FileWriter
-
- FILES_NUM = 4
- CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
- CV_DIR_NAME = "../data/mindrecord/testImageNetData"
- NLP_FILE_NAME = "../data/mindrecord/aclImdb.mindrecord"
- NLP_FILE_POS = "../data/mindrecord/testAclImdbData/pos"
- NLP_FILE_VOCAB= "../data/mindrecord/testAclImdbData/vocab.txt"
-
- @pytest.fixture
- def add_and_remove_cv_file():
- """add/remove cv file"""
- paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
- os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None
- writer = FileWriter(CV_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "img_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- yield "yield_cv_data"
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
- @pytest.fixture
- def add_and_remove_nlp_file():
- """add/remove nlp file"""
- paths = ["{}{}".format(NLP_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- if os.path.exists("{}".format(x)):
- os.remove("{}".format(x))
- if os.path.exists("{}.db".format(x)):
- os.remove("{}.db".format(x))
- writer = FileWriter(NLP_FILE_NAME, FILES_NUM)
- data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
- nlp_schema_json = {"id": {"type": "string"}, "label": {"type": "int32"},
- "rating": {"type": "float32"},
- "input_ids": {"type": "int64",
- "shape": [-1]},
- "input_mask": {"type": "int64",
- "shape": [1, -1]},
- "segment_ids": {"type": "int64",
- "shape": [2,-1]}
- }
- writer.set_header_size(1 << 14)
- writer.set_page_size(1 << 15)
- writer.add_schema(nlp_schema_json, "nlp_schema")
- writer.add_index(["id", "rating"])
- writer.write_raw_data(data)
- writer.commit()
- yield "yield_nlp_data"
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
- def test_cv_minddataset_writer_tutorial():
- """tutorial for cv dataset writer."""
- paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
- os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None
- writer = FileWriter(CV_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"file_name": {"type": "string"}, "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "img_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
-
- def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
-
- def partitions(num_shards):
- for partition_id in range(num_shards):
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- num_shards=num_shards, shard_id=partition_id)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- partition : {} ------------------------".format(partition_id))
- logger.info("-------------- item[label]: {} -----------------------".format(item["label"]))
- num_iter += 1
- return num_iter
-
- assert partitions(4) == 3
- assert partitions(5) == 2
- assert partitions(9) == 2
-
-
- def test_cv_minddataset_dataset_size(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- num_shards=4, shard_id=3)
- assert data_set.get_dataset_size() == 3
-
-
- def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- decode_op = vision.Decode()
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2)
- resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR)
- data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2)
- data_set = data_set.batch(2)
- data_set = data_set.repeat(2)
- num_iter = 0
- labels = []
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- labels.append(item["label"])
- assert num_iter == 10
- logger.info("repeat shuffle: {}".format(labels))
- assert len(labels) == 10
- assert labels[0:5] == labels[0:5]
- assert labels[0:5] != labels[5:5]
-
-
- def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- decode_op = vision.Decode()
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2)
- resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR)
- data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2)
- data_set = data_set.batch(32, drop_remainder=True)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 0
-
-
- def test_cv_minddataset_issue_888(add_and_remove_cv_file):
- """issue 888 test."""
- columns_list = ["data", "label"]
- num_readers = 2
- data = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False, num_shards=5, shard_id=1)
- data = data.shuffle(2)
- data = data.repeat(9)
- num_iter = 0
- for item in data.create_dict_iterator():
- num_iter += 1
- assert num_iter == 18
-
-
- def test_cv_minddataset_blockreader_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- block_reader=True)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
-
- def test_cv_minddataset_blockreader_some_field_not_in_index_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["id", "data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False,
- block_reader=True)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter))
- logger.info("-------------- item[id]: {} ----------------------------".format(item["id"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
-
-
- def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 10
-
- def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file):
- """tutorial for nlp minderdataset."""
- num_readers = 4
- data_set = ds.MindDataset(NLP_FILE_NAME + "0", None, num_readers)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- num_iter: {} ------------------------".format(num_iter))
- logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
- logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
- logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
- item["input_ids"], item["input_ids"].shape))
- logger.info("-------------- item[input_mask]: {}, shape: {} -----------------".format(
- item["input_mask"], item["input_mask"].shape))
- logger.info("-------------- item[segment_ids]: {}, shape: {} -----------------".format(
- item["segment_ids"], item["segment_ids"].shape))
- assert item["input_ids"].shape == (50,)
- assert item["input_mask"].shape == (1, 50)
- assert item["segment_ids"].shape == (2, 25)
- num_iter += 1
- assert num_iter == 10
-
-
- def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- for epoch in range(5):
- num_iter = 0
- for data in data_set:
- logger.info("data is {}".format(data))
- num_iter += 1
- assert num_iter == 10
-
- data_set.reset()
-
-
- def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
-
- resize_height = 32
- resize_width = 32
-
- # define map operations
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width), ds.transforms.vision.Inter.LINEAR)
-
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=4)
- data_set = data_set.map(input_columns=["data"], operations=resize_op, num_parallel_workers=4)
-
- data_set = data_set.batch(2)
- assert data_set.get_dataset_size() == 5
- for epoch in range(5):
- num_iter = 0
- for data in data_set:
- logger.info("data is {}".format(data))
- num_iter += 1
- assert num_iter == 5
-
- data_set.reset()
-
-
- def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- data_set = ds.MindDataset(CV_FILE_NAME + "0")
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 10
-
-
- def test_cv_minddataset_reader_repeat_tutorial(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- repeat two test {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} -----------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} ----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} -----------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ---------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 20
-
-
- def get_data(dir_name):
- """
- usage: get data from imagenet dataset
- params:
- dir_name: directory containing folder images and annotation information
-
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- img_dir = os.path.join(dir_name, "images")
- ann_file = os.path.join(dir_name, "annotation.txt")
- with open(ann_file, "r") as file_reader:
- lines = file_reader.readlines()
-
- data_list = []
- for i, line in enumerate(lines):
- try:
- filename, label = line.split(",")
- label = label.strip("\n")
- with open(os.path.join(img_dir, filename), "rb") as file_reader:
- img = file_reader.read()
- data_json = {"id": i,
- "file_name": filename,
- "data": img,
- "label": int(label)}
- data_list.append(data_json)
- except FileNotFoundError:
- continue
- return data_list
-
- def get_multi_bytes_data(file_name, bytes_num=3):
- """
- Return raw data of multi-bytes dataset.
-
- Args:
- file_name (str): String of multi-bytes dataset's path.
- bytes_num (int): Number of bytes fields.
-
- Returns:
- List
- """
- if not os.path.exists(file_name):
- raise IOError("map file {} not exists".format(file_name))
- dir_name = os.path.dirname(file_name)
- with open(file_name, "r") as file_reader:
- lines = file_reader.readlines()
- data_list = []
- row_num = 0
- for line in lines:
- try:
- img10_path = line.strip('\n').split(" ")
- img5 = []
- for path in img10_path[:bytes_num]:
- with open(os.path.join(dir_name, path), "rb") as file_reader:
- img5 += [file_reader.read()]
- data_json = {"image_{}".format(i): img5[i]
- for i in range(len(img5))}
- data_json.update({"id": row_num})
- row_num += 1
- data_list.append(data_json)
- except FileNotFoundError:
- continue
- return data_list
-
- def get_mkv_data(dir_name):
- """
- Return raw data of Vehicle_and_Person dataset.
-
- Args:
- dir_name (str): String of Vehicle_and_Person dataset's path.
-
- Returns:
- List
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- img_dir = os.path.join(dir_name, "Image")
- label_dir = os.path.join(dir_name, "prelabel")
-
- data_list = []
- file_list = os.listdir(label_dir)
-
- index = 1
- for item in file_list:
- if os.path.splitext(item)[1] == '.json':
- file_path = os.path.join(label_dir, item)
-
- image_name = ''.join([os.path.splitext(item)[0], ".jpg"])
- image_path = os.path.join(img_dir, image_name)
-
- with open(file_path, "r") as load_f:
- load_dict = json.load(load_f)
-
- if os.path.exists(image_path):
- with open(image_path, "rb") as file_reader:
- img = file_reader.read()
- data_json = {"file_name": image_name,
- "prelabel": str(load_dict),
- "data": img,
- "id": index}
- data_list.append(data_json)
- index += 1
- logger.info('{} images are missing'.format(len(file_list)-len(data_list)))
- return data_list
-
- def get_nlp_data(dir_name, vocab_file, num):
- """
- Return raw data of aclImdb dataset.
-
- Args:
- dir_name (str): String of aclImdb dataset's path.
- vocab_file (str): String of dictionary's path.
- num (int): Number of sample.
-
- Returns:
- List
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- for root, dirs, files in os.walk(dir_name):
- for index, file_name_extension in enumerate(files):
- if index < num:
- file_path = os.path.join(root, file_name_extension)
- file_name, _ = file_name_extension.split('.', 1)
- id_, rating = file_name.split('_', 1)
- with open(file_path, 'r') as f:
- raw_content = f.read()
-
- dictionary = load_vocab(vocab_file)
- vectors = [dictionary.get('[CLS]')]
- vectors += [dictionary.get(i) if i in dictionary
- else dictionary.get('[UNK]')
- for i in re.findall(r"[\w']+|[{}]"
- .format(string.punctuation),
- raw_content)]
- vectors += [dictionary.get('[SEP]')]
- input_, mask, segment = inputs(vectors)
- input_ids = np.reshape(np.array(input_), [-1])
- input_mask = np.reshape(np.array(mask), [1, -1])
- segment_ids = np.reshape(np.array(segment), [2, -1])
- data = {
- "label": 1,
- "id": id_,
- "rating": float(rating),
- "input_ids": input_ids,
- "input_mask": input_mask,
- "segment_ids": segment_ids
- }
- yield data
-
- def convert_to_uni(text):
- if isinstance(text, str):
- return text
- if isinstance(text, bytes):
- return text.decode('utf-8', 'ignore')
- raise Exception("The type %s does not convert!" % type(text))
-
- def load_vocab(vocab_file):
- """load vocabulary to translate statement."""
- vocab = collections.OrderedDict()
- vocab.setdefault('blank', 2)
- index = 0
- with open(vocab_file) as reader:
- while True:
- tmp = reader.readline()
- if not tmp:
- break
- token = convert_to_uni(tmp)
- token = token.strip()
- vocab[token] = index
- index += 1
- return vocab
-
- def inputs(vectors, maxlen=50):
- length = len(vectors)
- if length > maxlen:
- return vectors[0:maxlen], [1]*maxlen, [0]*maxlen
- input_ = vectors+[0]*(maxlen-length)
- mask = [1]*length + [0]*(maxlen-length)
- segment = [0]*maxlen
- return input_, mask, segment
|