|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset as ds
- from mindspore import log as logger
- import mindspore.dataset.transforms.nlp.utils as nlp
-
- DATA_FILE = "../data/dataset/testTextFileDataset/1.txt"
- DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*"
-
- def test_textline_dataset_one_file():
- data = ds.TextFileDataset(DATA_FILE)
- count = 0
- for i in data.create_dict_iterator():
- logger.info("{}".format(i["text"]))
- count += 1
- assert(count == 3)
-
- def test_textline_dataset_all_file():
- data = ds.TextFileDataset(DATA_ALL_FILE)
- count = 0
- for i in data.create_dict_iterator():
- logger.info("{}".format(i["text"]))
- count += 1
- assert(count == 5)
-
- def test_textline_dataset_totext():
- data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=False)
- count = 0
- line = ["This is a text file.", "Another file.", "Be happy every day.", "End of file.", "Good luck to everyone."]
- for i in data.create_dict_iterator():
- str = nlp.as_text(i["text"])
- assert(str == line[count])
- count += 1
- assert(count == 5)
-
- def test_textline_dataset_num_samples():
- data = ds.TextFileDataset(DATA_FILE, num_samples=2)
- count = 0
- for i in data.create_dict_iterator():
- count += 1
- assert(count == 2)
-
- def test_textline_dataset_distribution():
- data = ds.TextFileDataset(DATA_ALL_FILE, num_shards=2, shard_id=1)
- count = 0
- for i in data.create_dict_iterator():
- count += 1
- assert(count == 3)
-
- def test_textline_dataset_repeat():
- data = ds.TextFileDataset(DATA_FILE, shuffle=False)
- data = data.repeat(3)
- count = 0
- line = ["This is a text file.", "Be happy every day.", "Good luck to everyone.",
- "This is a text file.", "Be happy every day.", "Good luck to everyone.",
- "This is a text file.", "Be happy every day.", "Good luck to everyone."]
- for i in data.create_dict_iterator():
- str = nlp.as_text(i["text"])
- assert(str == line[count])
- count += 1
- assert(count == 9)
-
- def test_textline_dataset_get_datasetsize():
- data = ds.TextFileDataset(DATA_FILE)
- size = data.get_dataset_size()
- assert(size == 3)
-
- if __name__ == "__main__":
- test_textline_dataset_one_file()
- test_textline_dataset_all_file()
- test_textline_dataset_totext()
- test_textline_dataset_num_samples()
- test_textline_dataset_distribution()
- test_textline_dataset_repeat()
- test_textline_dataset_get_datasetsize()
|