|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- from util import save_and_check
-
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- # Note: Number of rows in test.data dataset: 12
- DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
- GENERATE_GOLDEN = False
-
-
- def test_batch_01():
- """
- Test batch: batch_size>1, drop_remainder=True, no remainder exists
- """
- logger.info("test_batch_01")
- # define parameters
- batch_size = 2
- drop_remainder = True
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, drop_remainder)
-
- filename = "batch_01_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_02():
- """
- Test batch: batch_size>1, drop_remainder=True, remainder exists
- """
- logger.info("test_batch_02")
- # define parameters
- batch_size = 5
- drop_remainder = True
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
-
- filename = "batch_02_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_03():
- """
- Test batch: batch_size>1, drop_remainder=False, no remainder exists
- """
- logger.info("test_batch_03")
- # define parameters
- batch_size = 3
- drop_remainder = False
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size=batch_size, drop_remainder=drop_remainder)
-
- filename = "batch_03_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_04():
- """
- Test batch: batch_size>1, drop_remainder=False, remainder exists
- """
- logger.info("test_batch_04")
- # define parameters
- batch_size = 7
- drop_remainder = False
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, drop_remainder)
-
- filename = "batch_04_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_05():
- """
- Test batch: batch_size=1 (minimum valid size), drop_remainder default
- """
- logger.info("test_batch_05")
- # define parameters
- batch_size = 1
- parameters = {"params": {'batch_size': batch_size}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size)
-
- filename = "batch_05_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_06():
- """
- Test batch: batch_size = number-of-rows-in-dataset, drop_remainder=True, reorder params
- """
- logger.info("test_batch_06")
- # define parameters
- batch_size = 12
- drop_remainder = False
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(drop_remainder=drop_remainder, batch_size=batch_size)
-
- filename = "batch_06_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_07():
- """
- Test batch: num_parallel_workers>1, drop_remainder=False, reorder params
- """
- logger.info("test_batch_07")
- # define parameters
- batch_size = 4
- drop_remainder = False
- num_parallel_workers = 2
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder,
- 'num_parallel_workers': num_parallel_workers}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(num_parallel_workers=num_parallel_workers, drop_remainder=drop_remainder,
- batch_size=batch_size)
-
- filename = "batch_07_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_08():
- """
- Test batch: num_parallel_workers=1, drop_remainder default
- """
- logger.info("test_batch_08")
- # define parameters
- batch_size = 6
- num_parallel_workers = 1
- parameters = {"params": {'batch_size': batch_size,
- 'num_parallel_workers': num_parallel_workers}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, num_parallel_workers=num_parallel_workers)
-
- filename = "batch_08_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_09():
- """
- Test batch: batch_size > number-of-rows-in-dataset, drop_remainder=False
- """
- logger.info("test_batch_09")
- # define parameters
- batch_size = 13
- drop_remainder = False
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
-
- filename = "batch_09_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_10():
- """
- Test batch: batch_size > number-of-rows-in-dataset, drop_remainder=True
- """
- logger.info("test_batch_10")
- # define parameters
- batch_size = 99
- drop_remainder = True
- parameters = {"params": {'batch_size': batch_size,
- 'drop_remainder': drop_remainder}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
-
- filename = "batch_10_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_11():
- """
- Test batch: batch_size=1 and dataset-size=1
- """
- logger.info("test_batch_11")
- # define parameters
- batch_size = 1
- parameters = {"params": {'batch_size': batch_size}}
-
- # apply dataset operations
- # Use schema file with 1 row
- schema_file = "../data/dataset/testTFTestAllTypes/datasetSchema1Row.json"
- data1 = ds.TFRecordDataset(DATA_DIR, schema_file)
- data1 = data1.batch(batch_size)
-
- filename = "batch_11_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_batch_exception_01():
- """
- Test batch exception: num_parallel_workers=0
- """
- logger.info("test_batch_exception_01")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=2, drop_remainder=True, num_parallel_workers=0)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "num_parallel_workers" in str(e)
-
-
- def test_batch_exception_02():
- """
- Test batch exception: num_parallel_workers<0
- """
- logger.info("test_batch_exception_02")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(3, drop_remainder=True, num_parallel_workers=-1)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "num_parallel_workers" in str(e)
-
-
- def test_batch_exception_03():
- """
- Test batch exception: batch_size=0
- """
- logger.info("test_batch_exception_03")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=0)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def test_batch_exception_04():
- """
- Test batch exception: batch_size<0
- """
- logger.info("test_batch_exception_04")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=-1)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def test_batch_exception_05():
- """
- Test batch exception: batch_size wrong type, boolean value False
- """
- logger.info("test_batch_exception_05")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=False)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def skip_test_batch_exception_06():
- """
- Test batch exception: batch_size wrong type, boolean value True
- """
- logger.info("test_batch_exception_06")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=True)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def test_batch_exception_07():
- """
- Test batch exception: drop_remainder wrong type
- """
- logger.info("test_batch_exception_07")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(3, drop_remainder=0)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "drop_remainder" in str(e)
-
-
- def test_batch_exception_08():
- """
- Test batch exception: num_parallel_workers wrong type
- """
- logger.info("test_batch_exception_08")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(3, drop_remainder=True, num_parallel_workers=False)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "num_parallel_workers" in str(e)
-
-
- def test_batch_exception_09():
- """
- Test batch exception: Missing mandatory batch_size
- """
- logger.info("test_batch_exception_09")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(drop_remainder=True, num_parallel_workers=4)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def test_batch_exception_10():
- """
- Test batch exception: num_parallel_workers>>1
- """
- logger.info("test_batch_exception_10")
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
- try:
- data1 = data1.batch(batch_size=4, num_parallel_workers=8192)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "num_parallel_workers" in str(e)
-
-
- def test_batch_exception_11():
- """
- Test batch exception: wrong input order, num_parallel_workers wrongly used as drop_remainder
- """
- logger.info("test_batch_exception_11")
- # define parameters
- batch_size = 6
- num_parallel_workers = 1
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR)
- try:
- data1 = data1.batch(batch_size, num_parallel_workers)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "drop_remainder" in str(e)
-
-
- def test_batch_exception_12():
- """
- Test batch exception: wrong input order, drop_remainder wrongly used as batch_size
- """
- logger.info("test_batch_exception_12")
- # define parameters
- batch_size = 1
- drop_remainder = True
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR)
- try:
- data1 = data1.batch(drop_remainder, batch_size=batch_size)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "batch_size" in str(e)
-
-
- def test_batch_exception_13():
- """
- Test batch exception: invalid input parameter
- """
- logger.info("test_batch_exception_13")
- # define parameters
- batch_size = 4
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR)
- try:
- data1 = data1.batch(batch_size, shard_id=1)
- sum([1 for _ in data1])
-
- except BaseException as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "shard_id" in str(e)
-
-
- if __name__ == '__main__':
- test_batch_01()
- test_batch_02()
- test_batch_03()
- test_batch_04()
- test_batch_05()
- test_batch_06()
- test_batch_07()
- test_batch_08()
- test_batch_09()
- test_batch_10()
- test_batch_11()
- test_batch_exception_01()
- test_batch_exception_02()
- test_batch_exception_03()
- test_batch_exception_04()
- test_batch_exception_05()
- skip_test_batch_exception_06()
- test_batch_exception_07()
- test_batch_exception_08()
- test_batch_exception_09()
- test_batch_exception_10()
- test_batch_exception_11()
- test_batch_exception_12()
- test_batch_exception_13()
- logger.info('\n')
|