|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """YoloV3 train."""
- import os
- import time
- import argparse
- import datetime
-
- from mindspore import ParallelMode
- from mindspore.nn.optim.momentum import Momentum
- from mindspore import Tensor
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.callback import ModelCheckpoint, RunContext
- from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
- import mindspore as ms
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
- from src.logger import get_logger
- from src.util import AverageMeter, load_backbone, get_param_groups
- from src.lr_scheduler import warmup_step_lr, warmup_cosine_annealing_lr, \
- warmup_cosine_annealing_lr_V2, warmup_cosine_annealing_lr_sample
- from src.yolo_dataset import create_yolo_dataset
- from src.initializer import default_recurisive_init
- from src.config import ConfigYOLOV3DarkNet53
- from src.transforms import batch_preprocess_true_box, batch_preprocess_true_box_single
- from src.util import ShapeRecord
-
-
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
- device_target="Ascend", save_graphs=True, device_id=devid)
-
-
- class BuildTrainNetwork(nn.Cell):
- def __init__(self, network, criterion):
- super(BuildTrainNetwork, self).__init__()
- self.network = network
- self.criterion = criterion
-
- def construct(self, input_data, label):
- output = self.network(input_data)
- loss = self.criterion(output, label)
- return loss
-
-
- def parse_args():
- """Parse train arguments."""
- parser = argparse.ArgumentParser('mindspore coco training')
-
- # dataset related
- parser.add_argument('--data_dir', type=str, default='', help='train data dir')
- parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per gpu')
-
- # network related
- parser.add_argument('--pretrained_backbone', default='', type=str, help='model_path, local pretrained backbone'
- ' model to load')
- parser.add_argument('--resume_yolov3', default='', type=str, help='path of pretrained yolov3')
-
- # optimizer and lr related
- parser.add_argument('--lr_scheduler', default='exponential', type=str,
- help='lr-scheduler, option type: exponential, cosine_annealing')
- parser.add_argument('--lr', default=0.001, type=float, help='learning rate of the training')
- parser.add_argument('--lr_epochs', type=str, default='220,250', help='epoch of lr changing')
- parser.add_argument('--lr_gamma', type=float, default=0.1,
- help='decrease lr by a factor of exponential lr_scheduler')
- parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
- parser.add_argument('--T_max', type=int, default=320, help='T-max in cosine_annealing scheduler')
- parser.add_argument('--max_epoch', type=int, default=320, help='max epoch num to train the model')
- parser.add_argument('--warmup_epochs', default=0, type=float, help='warmup epoch')
- parser.add_argument('--weight_decay', type=float, default=0.0005, help='weight decay')
- parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
-
- # loss related
- parser.add_argument('--loss_scale', type=int, default=1024, help='static loss scale')
- parser.add_argument('--label_smooth', type=int, default=0, help='whether to use label smooth in CE')
- parser.add_argument('--label_smooth_factor', type=float, default=0.1, help='smooth strength of original one-hot')
-
- # logging related
- parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
- parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
- parser.add_argument('--ckpt_interval', type=int, default=None, help='ckpt_interval')
-
- parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
-
- # distributed related
- parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
- parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
- parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
-
- # roma obs
- parser.add_argument('--train_url', type=str, default="", help='train url')
-
- # profiler init
- parser.add_argument('--need_profiler', type=int, default=0, help='whether use profiler')
-
- # reset default config
- parser.add_argument('--training_shape', type=str, default="", help='fix training shape')
- parser.add_argument('--resize_rate', type=int, default=None, help='resize rate for multi-scale training')
-
- args, _ = parser.parse_known_args()
- if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max:
- args.T_max = args.max_epoch
-
- args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
- args.data_root = os.path.join(args.data_dir, 'train2014')
- args.annFile = os.path.join(args.data_dir, 'annotations/instances_train2014.json')
-
- return args
-
-
- def conver_training_shape(args):
- training_shape = [int(args.training_shape), int(args.training_shape)]
- return training_shape
-
-
- def train():
- """Train function."""
- args = parse_args()
-
- # init distributed
- if args.is_distributed:
- init()
- args.rank = get_rank()
- args.group_size = get_group_size()
-
- # select for master rank save ckpt or all rank save, compatiable for model parallel
- args.rank_save_ckpt_flag = 0
- if args.is_save_on_master:
- if args.rank == 0:
- args.rank_save_ckpt_flag = 1
- else:
- args.rank_save_ckpt_flag = 1
-
- # logger
- args.outputs_dir = os.path.join(args.ckpt_path,
- datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
- args.logger = get_logger(args.outputs_dir, args.rank)
- args.logger.save_args(args)
-
- if args.need_profiler:
- from mindinsight.profiler.profiling import Profiler
- profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
-
- loss_meter = AverageMeter('loss')
-
- context.reset_auto_parallel_context()
- if args.is_distributed:
- parallel_mode = ParallelMode.DATA_PARALLEL
- degree = get_group_size()
- else:
- parallel_mode = ParallelMode.STAND_ALONE
- degree = 1
- context.set_auto_parallel_context(parallel_mode=parallel_mode, mirror_mean=True, device_num=degree)
-
- network = YOLOV3DarkNet53(is_training=True)
- # default is kaiming-normal
- default_recurisive_init(network)
-
- if args.pretrained_backbone:
- network = load_backbone(network, args.pretrained_backbone, args)
- args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone))
- else:
- args.logger.info('Not load pre-trained backbone, please be careful')
-
- if args.resume_yolov3:
- param_dict = load_checkpoint(args.resume_yolov3)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('yolo_network.'):
- param_dict_new[key[13:]] = values
- args.logger.info('in resume {}'.format(key))
- else:
- param_dict_new[key] = values
- args.logger.info('in resume {}'.format(key))
-
- args.logger.info('resume finished')
- load_param_into_net(network, param_dict_new)
- args.logger.info('load_model {} success'.format(args.resume_yolov3))
-
- network = YoloWithLossCell(network)
- args.logger.info('finish get network')
-
- config = ConfigYOLOV3DarkNet53()
-
- config.label_smooth = args.label_smooth
- config.label_smooth_factor = args.label_smooth_factor
-
- if args.training_shape:
- config.multi_scale = [conver_training_shape(args)]
- if args.resize_rate:
- config.resize_rate = args.resize_rate
-
- ds, data_size = create_yolo_dataset(image_dir=args.data_root, anno_path=args.annFile, is_training=True,
- batch_size=args.per_batch_size, max_epoch=args.max_epoch,
- device_num=args.group_size, rank=args.rank, config=config)
- args.logger.info('Finish loading dataset')
-
- args.steps_per_epoch = int(data_size / args.per_batch_size / args.group_size)
-
- if not args.ckpt_interval:
- args.ckpt_interval = args.steps_per_epoch
-
- # lr scheduler
- if args.lr_scheduler == 'exponential':
- lr = warmup_step_lr(args.lr,
- args.lr_epochs,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- gamma=args.lr_gamma,
- )
- elif args.lr_scheduler == 'cosine_annealing':
- lr = warmup_cosine_annealing_lr(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.T_max,
- args.eta_min)
- elif args.lr_scheduler == 'cosine_annealing_V2':
- lr = warmup_cosine_annealing_lr_V2(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.T_max,
- args.eta_min)
- elif args.lr_scheduler == 'cosine_annealing_sample':
- lr = warmup_cosine_annealing_lr_sample(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.T_max,
- args.eta_min)
- else:
- raise NotImplementedError(args.lr_scheduler)
-
- opt = Momentum(params=get_param_groups(network),
- learning_rate=Tensor(lr),
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- loss_scale=args.loss_scale)
-
- network = TrainingWrapper(network, opt)
- network.set_train()
-
- if args.rank_save_ckpt_flag:
- # checkpoint save
- ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
- ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
- keep_checkpoint_max=ckpt_max_num)
- ckpt_cb = ModelCheckpoint(config=ckpt_config,
- directory=args.outputs_dir,
- prefix='{}'.format(args.rank))
- cb_params = _InternalCallbackParam()
- cb_params.train_network = network
- cb_params.epoch_num = ckpt_max_num
- cb_params.cur_epoch_num = 1
- run_context = RunContext(cb_params)
- ckpt_cb.begin(run_context)
-
- old_progress = -1
- t_end = time.time()
- data_loader = ds.create_dict_iterator()
-
- shape_record = ShapeRecord()
- for i, data in enumerate(data_loader):
- images = data["image"]
- input_shape = images.shape[2:4]
- args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
- shape_record.set(input_shape)
-
- images = Tensor(images)
- annos = data["annotation"]
- if args.group_size == 1:
- batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
- batch_preprocess_true_box(annos, config, input_shape)
- else:
- batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
- batch_preprocess_true_box_single(annos, config, input_shape)
-
- batch_y_true_0 = Tensor(batch_y_true_0)
- batch_y_true_1 = Tensor(batch_y_true_1)
- batch_y_true_2 = Tensor(batch_y_true_2)
- batch_gt_box0 = Tensor(batch_gt_box0)
- batch_gt_box1 = Tensor(batch_gt_box1)
- batch_gt_box2 = Tensor(batch_gt_box2)
-
- input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
- loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
- batch_gt_box2, input_shape)
- loss_meter.update(loss.asnumpy())
-
- if args.rank_save_ckpt_flag:
- # ckpt progress
- cb_params.cur_step_num = i + 1 # current step number
- cb_params.batch_num = i + 2
- ckpt_cb.step_end(run_context)
-
- if i % args.log_interval == 0:
- time_used = time.time() - t_end
- epoch = int(i / args.steps_per_epoch)
- fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
- if args.rank == 0:
- args.logger.info(
- 'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
- t_end = time.time()
- loss_meter.reset()
- old_progress = i
-
- if (i + 1) % args.steps_per_epoch == 0 and args.rank_save_ckpt_flag:
- cb_params.cur_epoch_num += 1
-
- if args.need_profiler:
- if i == 10:
- profiler.analyse()
- break
-
- args.logger.info('==========end training===============')
-
-
- if __name__ == "__main__":
- train()
|