|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _grad_ops as G
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- class NetReLU6(nn.Cell):
- def __init__(self):
- super(NetReLU6, self).__init__()
- self.relu6 = P.ReLU6()
-
- def construct(self, x):
- return self.relu6(x)
-
- class NetReLU6Grad(nn.Cell):
- def __init__(self):
- super(NetReLU6Grad, self).__init__()
- self.relu6_grad = G.ReLU6Grad()
-
- def construct(self, x, dy):
- return self.relu6_grad(dy, x)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_relu6():
- x = Tensor(np.array([[[[-1, 1, 10],
- [5.9, 6.1, 6],
- [10, 1, -1]]]]).astype(np.float32))
- expect = np.array([[[[0, 1, 6,],
- [5.9, 6, 6,],
- [6, 1, 0.]]]]).astype(np.float32)
-
- relu6 = NetReLU6()
- output = relu6(x)
- assert (output.asnumpy() == expect).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_relu6_grad():
- x = Tensor(np.array([[[[-1, 1, 10],
- [5.9, 6.1, 6],
- [10, 1, -1]]]]).astype(np.float32))
- dy = Tensor(np.array([[[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]]]]).astype(np.float32))
- expect = np.array([[[[0, 1, 0,],
- [1, 0, 1,],
- [0, 1, 0,]]]]).astype(np.float32)
- error = np.ones(shape=[3, 3]) * 1.0e-6
-
- relu6_grad = NetReLU6Grad()
- output = relu6_grad(x, dy)
- diff = np.abs(output.asnumpy() - expect)
- assert np.all(np.abs(diff) < error)
|