|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class NetArgmax(nn.Cell):
- def __init__(self):
- super(NetArgmax, self).__init__()
- self.argmax = P.Argmax(output_type=mstype.int32)
- x = Tensor(np.array([[1., 20., 5.],
- [67., 8., 9.],
- [130., 24., 15.]]).astype(np.float32))
- self.x = Parameter(initializer(x, x.shape), name='x')
-
- def construct(self):
- return self.argmax(self.x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_argmax():
- Argmax = NetArgmax()
- output = Argmax()
- print("================================")
- expect = np.array([1, 0, 0]).astype(np.float32)
- print(output)
- assert (output.asnumpy() == expect).all()
|