|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into air and onnx models#################
- python export.py
- """
- import argparse
- import numpy as np
-
- import mindspore as ms
- from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
-
- from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg
- from src.alexnet import AlexNet
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Classification')
- parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
- help='please choose dataset: imagenet or cifar10.')
- parser.add_argument('--device_target', type=str, default="Ascend",
- choices=['Ascend', 'GPU'],
- help='device where the code will be implemented (default: Ascend)')
- parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
- path where the trained ckpt file')
- args_opt = parser.parse_args()
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
-
- if args_opt.dataset_name == 'cifar10':
- cfg = alexnet_cifar10_cfg
- elif args_opt.dataset_name == 'imagenet':
- cfg = alexnet_imagenet_cfg
- else:
- raise ValueError("dataset is not support.")
-
- net = AlexNet(num_classes=cfg.num_classes)
-
- param_dict = load_checkpoint(args_opt.ckpt_path)
- load_param_into_net(net, param_dict)
-
- input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_height, cfg.image_width]), ms.float32)
- export(net, input_arr, file_name=cfg.air_name, file_format="AIR")
|