|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self, _shape):
- super(Net, self).__init__()
- self.shape = _shape
- self.scatternd = P.ScatterNd()
-
- def construct(self, indices, update):
- return self.scatternd(indices, update, self.shape)
-
-
- def scatternd_net(indices, update, _shape, expect):
- scatternd = Net(_shape)
- output = scatternd(Tensor(indices), Tensor(update))
- error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- def scatternd_positive(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
- arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
- arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(nptype)
- shape = (2, 2)
- expect = np.array([[0., 5.3],
- [0., 1.1]]).astype(nptype)
- scatternd_net(arr_indices, arr_update, shape, expect)
-
- def scatternd_negative(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
- arr_indices = np.array([[1, 0], [1, 1], [1, 0], [1, 0], [1, 0]]).astype(np.int32)
- arr_update = np.array([-13.4, -3.1, 5.1, -12.1, -1.0]).astype(nptype)
- shape = (2, 2)
- expect = np.array([[0., 0.],
- [-21.4, -3.1]]).astype(nptype)
- scatternd_net(arr_indices, arr_update, shape, expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_scatternd_float32():
- scatternd_positive(np.float32)
- scatternd_negative(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_scatternd_float16():
- scatternd_positive(np.float16)
- scatternd_negative(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_scatternd_int16():
- scatternd_positive(np.int16)
- scatternd_negative(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_scatternd_uint8():
- scatternd_positive(np.uint8)
|