|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """unit tests for numpy logical operations"""
-
- import pytest
- import numpy as onp
-
- import mindspore.numpy as mnp
-
- from .utils import rand_int, rand_bool, run_binop_test, run_logical_test, match_res, \
- match_all_arrays, to_tensor
-
-
- class Cases():
- def __init__(self):
- self.arrs = [
- rand_int(2),
- rand_int(2, 3),
- rand_int(2, 3, 4),
- rand_int(2, 3, 4, 5),
- ]
-
- # scalars expanded across the 0th dimension
- self.scalars = [
- rand_int(),
- rand_int(1),
- rand_int(1, 1),
- rand_int(1, 1, 1, 1),
- ]
-
- # arrays of the same size expanded across the 0th dimension
- self.expanded_arrs = [
- rand_int(2, 3),
- rand_int(1, 2, 3),
- rand_int(1, 1, 2, 3),
- rand_int(1, 1, 1, 2, 3),
- ]
-
- # arrays which can be broadcast
- self.broadcastables = [
- rand_int(5),
- rand_int(6, 1),
- rand_int(7, 1, 5),
- rand_int(8, 1, 6, 1)
- ]
-
- # Boolean arrays
- self.boolean_arrs = [
- rand_bool(),
- rand_bool(5),
- rand_bool(6, 1),
- rand_bool(7, 1, 5),
- rand_bool(8, 1, 6, 1)
- ]
-
- # array which contains infs and nans
- self.infs = onp.array([[1.0, onp.nan], [onp.inf, onp.NINF], [2.3, -4.5], [onp.nan, 0.0]])
-
-
- test_case = Cases()
-
-
- def mnp_not_equal(a, b):
- return mnp.not_equal(a, b)
-
-
- def onp_not_equal(a, b):
- return onp.not_equal(a, b)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_not_equal():
- run_binop_test(mnp_not_equal, onp_not_equal, test_case)
-
-
- def mnp_less_equal(a, b):
- return mnp.less_equal(a, b)
-
-
- def onp_less_equal(a, b):
- return onp.less_equal(a, b)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_less_equal():
- run_binop_test(mnp_less_equal, onp_less_equal, test_case)
-
-
- def mnp_less(a, b):
- return mnp.less(a, b)
-
-
- def onp_less(a, b):
- return onp.less(a, b)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_less():
- run_binop_test(mnp_less, onp_less, test_case)
-
-
- def mnp_greater_equal(a, b):
- return mnp.greater_equal(a, b)
-
-
- def onp_greater_equal(a, b):
- return onp.greater_equal(a, b)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_greater_equal():
- run_binop_test(mnp_greater_equal, onp_greater_equal, test_case)
-
-
- def mnp_greater(a, b):
- return mnp.greater(a, b)
-
-
- def onp_greater(a, b):
- return onp.greater(a, b)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_greater():
- run_binop_test(mnp_greater, onp_greater, test_case)
-
-
- def mnp_equal(a, b):
- return mnp.equal(a, b)
-
-
- def onp_equal(a, b):
- return onp.equal(a, b)
-
-
- def test_equal():
- run_binop_test(mnp_equal, onp_equal, test_case)
-
-
- def mnp_isfinite(x):
- return mnp.isfinite(x)
-
-
- def onp_isfinite(x):
- return onp.isfinite(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isfinite():
- match_res(mnp_isfinite, onp_isfinite, test_case.infs)
-
-
- def mnp_isnan(x):
- return mnp.isnan(x)
-
-
- def onp_isnan(x):
- return onp.isnan(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isnan():
- match_res(mnp_isnan, onp_isnan, test_case.infs)
-
-
- def mnp_isinf(x):
- return mnp.isinf(x)
-
-
- def onp_isinf(x):
- return onp.isinf(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isinf():
- match_res(mnp_isinf, onp_isinf, test_case.infs)
-
-
- def mnp_isposinf(x):
- return mnp.isposinf(x)
-
-
- def onp_isposinf(x):
- return onp.isposinf(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isposinf():
- match_res(mnp_isposinf, onp_isposinf, test_case.infs)
-
-
- def mnp_isneginf(x):
- return mnp.isneginf(x)
-
-
- def onp_isneginf(x):
- return onp.isneginf(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isneginf():
- match_res(mnp_isneginf, onp_isneginf, test_case.infs)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isscalar():
- assert mnp.isscalar(1) == onp.isscalar(1)
- assert mnp.isscalar(2.3) == onp.isscalar(2.3)
- assert mnp.isscalar([4.5]) == onp.isscalar([4.5])
- assert mnp.isscalar(False) == onp.isscalar(False)
- assert mnp.isscalar(to_tensor(True)) == onp.isscalar(onp.array(True))
- assert mnp.isscalar('numpy') == onp.isscalar('numpy')
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isclose():
- a = [0, 1, 2, float('inf'), float('inf'), float('nan')]
- b = [0, 1, -2, float('-inf'), float('inf'), float('nan')]
- match_all_arrays(mnp.isclose(a, b), onp.isclose(a, b))
- match_all_arrays(mnp.isclose(a, b, equal_nan=True), onp.isclose(a, b, equal_nan=True))
-
- a = rand_int(2, 3, 4, 5)
- diff = (onp.random.random((2, 3, 4, 5)).astype("float32") - 0.5) / 1000
- b = a + diff
- match_all_arrays(mnp.isclose(to_tensor(a), to_tensor(b), atol=1e-3), onp.isclose(a, b, atol=1e-3))
- match_all_arrays(mnp.isclose(to_tensor(a), to_tensor(b), atol=1e-3, rtol=1e-4),
- onp.isclose(a, b, atol=1e-3, rtol=1e-4))
- match_all_arrays(mnp.isclose(to_tensor(a), to_tensor(b), atol=1e-2, rtol=1e-6),
- onp.isclose(a, b, atol=1e-2, rtol=1e-6))
-
- a = rand_int(2, 3, 4, 5)
- b = rand_int(4, 5)
- match_all_arrays(mnp.isclose(to_tensor(a), to_tensor(b)), onp.isclose(a, b))
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_in1d():
- xi = [rand_int(), rand_int(1), rand_int(10)]
- yi = [rand_int(), rand_int(1), rand_int(10)]
- for x in xi:
- for y in yi:
- match_res(mnp.in1d, onp.in1d, x, y)
- match_res(mnp.in1d, onp.in1d, x, y, invert=True)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_isin():
- xi = [rand_int(), rand_int(1), rand_int(10), rand_int(2, 3)]
- yi = [rand_int(), rand_int(1), rand_int(10), rand_int(2, 3)]
- for x in xi:
- for y in yi:
- match_res(mnp.in1d, onp.in1d, x, y)
- match_res(mnp.in1d, onp.in1d, x, y, invert=True)
-
-
- def mnp_logical_or(x1, x2):
- return mnp.logical_or(x1, x2)
-
-
- def onp_logical_or(x1, x2):
- return onp.logical_or(x1, x2)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_logical_or():
- run_logical_test(mnp_logical_or, onp_logical_or, test_case)
-
-
- def mnp_logical_xor(x1, x2):
- return mnp.logical_xor(x1, x2)
-
-
- def onp_logical_xor(x1, x2):
- return onp.logical_xor(x1, x2)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_logical_xor():
- run_logical_test(mnp_logical_xor, onp_logical_xor, test_case)
-
-
- def mnp_logical_and(x1, x2):
- return mnp.logical_and(x1, x2)
-
-
- def onp_logical_and(x1, x2):
- return onp.logical_and(x1, x2)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_logical_and():
- run_logical_test(mnp_logical_and, onp_logical_and, test_case)
-
-
- def mnp_logical_not(x):
- return mnp.logical_not(x)
-
-
- def onp_logical_not(x):
- return onp.logical_not(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_logical_not():
- for arr in test_case.boolean_arrs:
- expected = onp_logical_not(arr)
- actual = mnp_logical_not(to_tensor(arr))
- onp.testing.assert_equal(actual.asnumpy().tolist(), expected.tolist())
|