|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############postprocess#################
- """
- import os
- import argparse
- import numpy as np
- from mindspore.nn.metrics import Accuracy
- from src.config import cfg_mr, cfg_subj, cfg_sst2
-
-
- parser = argparse.ArgumentParser(description='postprocess')
- parser.add_argument('--label_dir', type=str, default="", help='label data dir')
- parser.add_argument('--result_dir', type=str, default="", help="infer result dir")
- parser.add_argument('--dataset', type=str, default="MR", choices=['MR', 'SUBJ', 'SST2'])
- args = parser.parse_args()
-
- if __name__ == '__main__':
- if args.dataset == 'MR':
- cfg = cfg_mr
- elif args.dataset == 'SUBJ':
- cfg = cfg_subj
- elif args.dataset == 'SST2':
- cfg = cfg_sst2
-
- file_prefix = 'textcnn_bs' + str(cfg.batch_size) + '_'
-
- metric = Accuracy()
- metric.clear()
- label_list = np.load(args.label_dir, allow_pickle=True)
-
- for idx, label in enumerate(label_list):
- pred = np.fromfile(os.path.join(args.result_dir, file_prefix + str(idx) + '_0.bin'), np.float32)
- pred = pred.reshape(cfg.batch_size, int(pred.shape[0]/cfg.batch_size))
- metric.update(pred, label)
- accuracy = metric.eval()
- print("accuracy: ", accuracy)
|