|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """debug_ops"""
- from types import FunctionType, MethodType
- from ..._checkparam import Validator as validator
- from ..._checkparam import Rel
- from ...common import dtype as mstype
- from ..primitive import prim_attr_register, PrimitiveWithInfer
-
-
- def _check_summary_param(name, value, class_name):
- """Checks the name and value is valid for summary."""
- n_type = name['dtype']
- n_value = name['value']
- validator.check_value_type('name', n_type, [type(mstype.string)], class_name)
- if not n_value:
- raise ValueError(f"For 'name' the value should by valid string in {class_name}, but got an empty string.")
-
- v_type = value['dtype']
- validator.check_value_type('value', v_type, [type(mstype.tensor)], class_name)
-
-
- # Note: The return value of the summary operator is not used,
- # so there's nothing special about the return `dtype` or `shape`, any value is ok.
- # The `value` should be set to None, else summary operators may be optimized at compile graph phase,
- # it cause summary operators can not record data in constant folding scene.
- SUMMARY_RETURN_VALUE = {'dtype': mstype.int32, 'shape': [1], 'value': None}
-
-
- class ScalarSummary(PrimitiveWithInfer):
- """
- Outputs a scalar to a protocol buffer through a scalar summary operator.
-
- Inputs:
- - **name** (str) - The name of the input variable, it must not be an empty string.
- - **value** (Tensor) - The value of scalar, and the shape of value must be [] or [1].
-
- Examples:
- >>> class SummaryDemo(nn.Cell):
- >>> def __init__(self,):
- >>> super(SummaryDemo, self).__init__()
- >>> self.summary = P.ScalarSummary()
- >>> self.add = P.TensorAdd()
- >>>
- >>> def construct(self, x, y):
- >>> name = "x"
- >>> self.summary(name, x)
- >>> x = self.add(x, y)
- >>> return x
- """
-
- @prim_attr_register
- def __init__(self):
- """init"""
-
- def __infer__(self, name, value):
- _check_summary_param(name, value, self.__class__.__name__)
-
- v_shape = value['shape']
- # In the summary, the value whose shape is [1] is also considered as a scalar.
- if v_shape and v_shape != [1]:
- raise ValueError(f"For 'value' the type should be scalar, "
- f"shape should be [] or [1] in {self.__class__.__name__}, but got {v_shape}.")
-
- return SUMMARY_RETURN_VALUE
-
-
- class ImageSummary(PrimitiveWithInfer):
- """
- Outputs image tensor to protocol buffer through image summary operator.
-
- Inputs:
- - **name** (str) - The name of the input variable, it must not be an empty string.
- - **value** (Tensor) - The value of image, the rank of tensor must be 4.
-
- Examples:
- >>> class Net(nn.Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self.summary = P.ImageSummary()
- >>>
- >>> def construct(self, x):
- >>> name = "image"
- >>> out = self.summary(name, x)
- >>> return out
- """
-
- @prim_attr_register
- def __init__(self):
- """init"""
-
- def __infer__(self, name, value):
- _check_summary_param(name, value, self.__class__.__name__)
-
- # The shape dim of image should be 4.
- v_shape = value['shape']
- image_dim = 4
- if len(v_shape) != image_dim:
- raise ValueError(f"For 'value' the dim should be {image_dim} in {self.__class__.__name__},"
- f" but got {len(v_shape)}.")
-
- return SUMMARY_RETURN_VALUE
-
-
- class TensorSummary(PrimitiveWithInfer):
- """
- Outputs a tensor to a protocol buffer through a tensor summary operator.
-
- Inputs:
- - **name** (str) - The name of the input variable.
- - **value** (Tensor) - The value of tensor, and the rank of tensor must be greater than 0.
-
- Examples:
- >>> class SummaryDemo(nn.Cell):
- >>> def __init__(self,):
- >>> super(SummaryDemo, self).__init__()
- >>> self.summary = P.TensorSummary()
- >>> self.add = P.TensorAdd()
- >>>
- >>> def construct(self, x, y):
- >>> x = self.add(x, y)
- >>> name = "x"
- >>> self.summary(name, x)
- >>> return x
- """
-
- @prim_attr_register
- def __init__(self):
- """init"""
-
- def __infer__(self, name, value):
- _check_summary_param(name, value, self.__class__.__name__)
-
- v_shape = value['shape']
- # In the summary, the value whose shape is [] is not considered as a tensor.
- if not v_shape:
- raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
- f"shape should not be [].")
-
- return SUMMARY_RETURN_VALUE
-
-
- class HistogramSummary(PrimitiveWithInfer):
- """
- Outputs tensor to protocol buffer through histogram summary operator.
-
- Inputs:
- - **name** (str) - The name of the input variable.
- - **value** (Tensor) - The value of tensor, and the rank of tensor must be greater than 0.
-
- Examples:
- >>> class SummaryDemo(nn.Cell):
- >>> def __init__(self,):
- >>> super(SummaryDemo, self).__init__()
- >>> self.summary = P.HistogramSummary()
- >>> self.add = P.TensorAdd()
- >>>
- >>> def construct(self, x, y):
- >>> x = self.add(x, y)
- >>> name = "x"
- >>> self.summary(name, x)
- >>> return x
- """
-
- @prim_attr_register
- def __init__(self):
- """init"""
-
- def __infer__(self, name, value):
- _check_summary_param(name, value, self.__class__.__name__)
-
- v_shape = value['shape']
- # In the summary, the histogram value should be a tensor whose shape is not [].
- if not v_shape:
- raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
- f"shape should not be [].")
-
- return SUMMARY_RETURN_VALUE
-
-
- class InsertGradientOf(PrimitiveWithInfer):
- """
- Attaches callback to graph node that will be invoked on the node's gradient.
-
- Args:
- f (Function): MindSpore's Function. Callback function.
-
- Inputs:
- - **input_x** (Any) - The graph node to attach to.
-
- Outputs:
- Tensor, returns `input_x` directly. `InsertGradientOf` does not affect the forward result.
-
- Examples:
- >>> def clip_gradient(dx):
- >>> ret = dx
- >>> if ret > 1.0:
- >>> ret = 1.0
- >>>
- >>> if ret < 0.2:
- >>> ret = 0.2
- >>>
- >>> return ret
- >>>
- >>> clip = P.InsertGradientOf(clip_gradient)
- >>> grad_all = C.GradOperation(get_all=True)
- >>> def InsertGradientOfClipDemo():
- >>> def clip_test(x, y):
- >>> x = clip(x)
- >>> y = clip(y)
- >>> c = x * y
- >>> return c
- >>>
- >>> @ms_function
- >>> def f(x, y):
- >>> return clip_test(x, y)
- >>>
- >>> def fd(x, y):
- >>> return grad_all(clip_test)(x, y)
- >>>
- >>> print("forward: ", f(1.1, 0.1))
- >>> print("clip_gradient:", fd(1.1, 0.1))
- """
-
- @prim_attr_register
- def __init__(self, f):
- self.f = f
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- return x_type
-
-
- class HookBackward(PrimitiveWithInfer):
- """
- This operation is used as a tag to hook gradient in intermediate variables. Note that this function
- is only supported in Pynative Mode.
-
- Note:
- The hook function must be defined like `hook_fn(grad) -> Tensor or None`,
- where grad is the gradient passed to the primitive and gradient may be
- modified and passed to next primitive. The difference between a hook function and
- callback of InsertGradientOf is that a hook function is executed in the python
- environment while callback will be parsed and added to the graph.
-
- Args:
- hook_fn (Function): Python function. hook function.
-
- Inputs:
- - **inputs** (Tensor) - The variable to hook.
-
- Examples:
- >>> def hook_fn(grad_out):
- >>> print(grad_out)
- >>>
- >>> grad_all = GradOperation(get_all=True)
- >>> hook = P.HookBackward(hook_fn)
- >>>
- >>> def hook_test(x, y):
- >>> z = x * y
- >>> z = hook(z)
- >>> z = z * y
- >>> return z
- >>>
- >>> def backward(x, y):
- >>> return grad_all(hook_test)(x, y)
- >>>
- >>> backward(1, 2)
- """
-
- def __init__(self, hook_fn, cell_id=""):
- super(HookBackward, self).__init__(self.__class__.__name__)
- self.add_prim_attr("cell_id", cell_id)
- self.init_attrs["cell_id"] = cell_id
- if not isinstance(hook_fn, (FunctionType, MethodType)):
- raise TypeError("Hook function should be python function type.")
- self.register_hook(hook_fn)
- self.cell_id = cell_id
-
- def infer_shape(self, *inputs_shape):
- if len(inputs_shape) == 1:
- return inputs_shape[0]
- return inputs_shape
-
- def infer_dtype(self, *inputs_type):
- if len(inputs_type) == 1:
- return inputs_type[0]
- return inputs_type
-
-
- class Print(PrimitiveWithInfer):
- """
- Outputs tensor or string to stdout.
-
- Note:
- In pynative mode, please use python print function.
-
- Inputs:
- - **input_x** (Union[Tensor, str]) - The graph node to attach to. The input supports
- multiple strings and tensors which are separated by ','.
-
- Examples:
- >>> class PrintDemo(nn.Cell):
- >>> def __init__(self):
- >>> super(PrintDemo, self).__init__()
- >>> self.print = P.Print()
- >>>
- >>> def construct(self, x, y):
- >>> self.print('Print Tensor x and Tensor y:', x, y)
- >>> return x
- """
-
- @prim_attr_register
- def __init__(self):
- self.add_prim_attr("_side_effect", True)
-
- def __call__(self, *args):
- for arg in args:
- print(arg)
-
- def infer_shape(self, *inputs):
- return [1]
-
- def infer_dtype(self, *inputs):
- for dtype in inputs:
- validator.check_subclass("input", dtype, (mstype.tensor, mstype.string), self.name)
- return mstype.int32
-
-
- class Assert(PrimitiveWithInfer):
- """
- Asserts that the given condition is true.
- If input condition evaluates to false, print the list of tensor in data.
-
- Args:
- summarize (int): Print this many entries of each tensor.
-
- Inputs:
- - **condition** [Union[Tensor[bool], bool]] - The condition to evaluate.
- - **input_data** (Union(tuple[Tensor], list[Tensor])) - The tensors to print out when condition is false.
-
- Examples:
- >>> class AssertDemo(nn.Cell):
- >>> def __init__(self):
- >>> super(AssertDemo, self).__init__()
- >>> self.assert = P.Assert(summarize=10)
- >>> self.add = P.TensorAdd()
- >>>
- >>> def construct(self, x, y):
- >>> data = self.add(x, y)
- >>> self.assert(True, [data])
- >>> return data
- """
-
- @prim_attr_register
- def __init__(self, summarize=3):
- """Initialize Assert"""
- self.summarize = validator.check_value_type("summarize", summarize, [int], self.name)
-
- def infer_shape(self, condition, inputs):
- condition_len = len(condition)
- validator.check_integer("condition's rank", condition_len, 1, Rel.LE, self.name)
- if condition_len == 1:
- validator.check_integer("condition[0]", condition[0], 1, Rel.EQ, self.name)
- return [1]
-
- def infer_dtype(self, condition, inputs):
- validator.check_scalar_or_tensor_type_same({"condition": condition}, [mstype.bool_], self.name)
- for dtype in inputs:
- validator.check_subclass("input", dtype, [mstype.tensor], self.name)
- return mstype.int32
|