|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import datetime
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.communication.management import init, get_group_size
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- init()
-
- epoch = 5
- total = 5000
- batch_size = 32
- mini_batch = total // batch_size
-
-
- class LeNet(nn.Cell):
- def __init__(self):
- super(LeNet, self).__init__()
-
- self.relu = P.ReLU()
- self.batch_size = 32
- weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
- weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
- self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
- self.reshape = P.Reshape()
-
- weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01)
- self.fc1 = nn.Dense(400, 120, weight_init=weight1)
-
- weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01)
- self.fc2 = nn.Dense(120, 84, weight_init=weight2)
-
- weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01)
- self.fc3 = nn.Dense(84, 10, weight_init=weight3)
-
- def construct(self, input_x):
- output = self.conv1(input_x)
- output = self.relu(output)
- output = self.pool(output)
- output = self.conv2(output)
- output = self.relu(output)
- output = self.pool(output)
- output = self.reshape(output, (self.batch_size, -1))
- output = self.fc1(output)
- output = self.fc2(output)
- output = self.fc3(output)
- return output
-
-
- def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
- lr = []
- for step in range(total_steps):
- lr_ = base_lr * gamma ** (step // gap)
- lr.append(lr_)
- return Tensor(np.array(lr), dtype)
-
-
- def test_lenet_nccl():
- context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size())
- net = LeNet()
- net.set_train()
-
- learning_rate = multisteplr(epoch, 2)
- momentum = 0.9
- mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, mom_optimizer)
- train_network.set_train()
- losses = []
-
- data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([net.batch_size]).astype(np.int32))
- start = datetime.datetime.now()
- for _ in range(epoch):
- for _ in range(mini_batch):
- loss = train_network(data, label)
- losses.append(loss.asnumpy())
- end = datetime.datetime.now()
- with open("ms_time.txt", "w") as fo1:
- fo1.write("time:")
- fo1.write(str(end - start))
- with open("ms_loss.txt", "w") as fo2:
- fo2.write("loss:")
- fo2.write(str(losses[-5:]))
- assert losses[-1] < 0.01
|