|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Train mobilenetV2 on ImageNet"""
-
- import os
- import argparse
- import random
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore import nn
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
- from mindspore.train.serialization import load_checkpoint
- from mindspore.communication.management import init, get_group_size, get_rank
- from mindspore.train.quant import quant
- from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
- import mindspore.dataset.engine as de
-
- from src.dataset import create_dataset
- from src.lr_generator import get_lr
- from src.utils import Monitor, CrossEntropyWithLabelSmooth
- from src.config import config_ascend_quant, config_gpu_quant
- from src.mobilenetV2 import mobilenetV2
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
- parser.add_argument('--device_target', type=str, default=None, help='Run device target')
- args_opt = parser.parse_args()
-
- if args_opt.device_target == "Ascend":
- device_id = int(os.getenv('DEVICE_ID'))
- rank_id = int(os.getenv('RANK_ID'))
- rank_size = int(os.getenv('RANK_SIZE'))
- run_distribute = rank_size > 1
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend",
- device_id=device_id, save_graphs=False)
- elif args_opt.device_target == "GPU":
- init()
- context.set_auto_parallel_context(device_num=get_group_size(),
- parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- context.set_context(mode=context.GRAPH_MODE,
- device_target="GPU",
- save_graphs=False)
- else:
- raise ValueError("Unsupported device target.")
-
-
- def train_on_ascend():
- config = config_ascend_quant
- print("training args: {}".format(args_opt))
- print("training configure: {}".format(config))
- print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
- epoch_size = config.epoch_size
-
- # distribute init
- if run_distribute:
- context.set_auto_parallel_context(device_num=rank_size,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- parameter_broadcast=True,
- mirror_mean=True)
- init()
-
- # define network
- network = mobilenetV2(num_classes=config.num_classes)
- # define loss
- if config.label_smooth > 0:
- loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
- else:
- loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
- # define dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- config=config,
- device_target=args_opt.device_target,
- repeat_num=1,
- batch_size=config.batch_size)
- step_size = dataset.get_dataset_size()
- # load pre trained ckpt
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_nonquant_param_into_quant_net(network, param_dict)
- # convert fusion network to quantization aware network
- network = quant.convert_quant_network(network,
- bn_fold=True,
- per_channel=[True, False],
- symmetric=[True, False])
-
- # get learning rate
- lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
- lr_init=0,
- lr_end=0,
- lr_max=config.lr,
- warmup_epochs=config.warmup_epochs,
- total_epochs=epoch_size + config.start_epoch,
- steps_per_epoch=step_size))
-
- # define optimization
- opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
- config.weight_decay)
- # define model
- model = Model(network, loss_fn=loss, optimizer=opt)
-
- print("============== Starting Training ==============")
- callback = None
- if rank_id == 0:
- callback = [Monitor(lr_init=lr.asnumpy())]
- if config.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="mobilenetV2",
- directory=config.save_checkpoint_path,
- config=config_ck)
- callback += [ckpt_cb]
- model.train(epoch_size, dataset, callbacks=callback)
- print("============== End Training ==============")
-
-
- def train_on_gpu():
- config = config_gpu_quant
- print("training args: {}".format(args_opt))
- print("training configure: {}".format(config))
-
- # define network
- network = mobilenetV2(num_classes=config.num_classes)
- # define loss
- if config.label_smooth > 0:
- loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth,
- num_classes=config.num_classes)
- else:
- loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
- # define dataset
- epoch_size = config.epoch_size
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- config=config,
- device_target=args_opt.device_target,
- repeat_num=1,
- batch_size=config.batch_size)
- step_size = dataset.get_dataset_size()
- # resume
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_nonquant_param_into_quant_net(network, param_dict)
-
- # convert fusion network to quantization aware network
- network = quant.convert_quant_network(network,
- bn_fold=True,
- per_channel=[True, False],
- symmetric=[True, False],
- freeze_bn=1000000,
- quant_delay=step_size * 2)
-
- # get learning rate
- loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
- lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
- lr_init=0,
- lr_end=0,
- lr_max=config.lr,
- warmup_epochs=config.warmup_epochs,
- total_epochs=epoch_size + config.start_epoch,
- steps_per_epoch=step_size))
-
- # define optimization
- opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
- config.weight_decay, config.loss_scale)
- # define model
- model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
-
- print("============== Starting Training ==============")
- callback = [Monitor(lr_init=lr.asnumpy())]
- ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
- if config.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
- callback += [ckpt_cb]
- model.train(epoch_size, dataset, callbacks=callback)
- print("============== End Training ==============")
-
-
- if __name__ == '__main__':
- if args_opt.device_target == "Ascend":
- train_on_ascend()
- elif args_opt.device_target == "GPU":
- train_on_gpu()
- else:
- raise ValueError("Unsupported device target.")
|