|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test nn ops """
- import functools
- import numpy as np
- import mindspore.nn as nn
- import mindspore.common.dtype as mstype
-
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore import context
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
-
-
- def test_cast_op_attr():
- class CastNet(nn.Cell):
- def __init__(self):
- super(CastNet, self).__init__()
- self.cast = P.Cast()
- def construct(self, x, t):
- return self.cast(x, t)
-
- class CastTypeTest(nn.Cell):
- def __init__(self, net):
- super(CastTypeTest, self).__init__()
- self.net = net
- self.cast = P.Cast()
- def construct(self, x, y, z):
- cast_op = self.cast
- t1 = cast_op(x, mstype.float32)
- t2 = cast_op(y, mstype.int32)
- cast_net = self.net
- t3 = cast_net(x, mstype.float16)
- t4 = cast_net(y, mstype.int32)
- t5 = cast_net(z, mstype.float16)
- return (t1, t2, t3, t4, t5)
- net = CastTypeTest(CastNet())
- t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
- t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
- t3 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
- out = net(t1, t2, t3)
- assert out[0].asnumpy().dtype == np.float32
- assert out[1].asnumpy().dtype == np.int32
- assert out[2].asnumpy().dtype == np.float16
- assert out[3].asnumpy().dtype == np.int32
- assert out[4].asnumpy().dtype == np.float16
|