|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Train SSD and get checkpoint files."""
-
- import os
- import argparse
- import ast
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.communication.management import init
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
- from mindspore.train import Model, ParallelMode
- # from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.ssd_ghostnet import SSD300, SSDWithLossCell, TrainingWrapper, ssd_ghostnet
- # from src.config_ghostnet_1x import config
- from src.config_ghostnet_13x import config
- from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
- from src.lr_schedule import get_lr
- from src.init_params import init_net_param, filter_checkpoint_parameter
-
-
- def main():
- parser = argparse.ArgumentParser(description="SSD training")
- parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
- help="If set it true, only create Mindrecord, default is False.")
- parser.add_argument("--distribute", type=ast.literal_eval, default=False,
- help="Run distribute, default is False.")
- parser.add_argument("--device_id", type=int, default=4,
- help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1,
- help="Use device nums, default is 1.")
- parser.add_argument("--lr", type=float, default=0.05,
- help="Learning rate, default is 0.05.")
- parser.add_argument("--mode", type=str, default="sink",
- help="Run sink mode or not, default is sink.")
- parser.add_argument("--dataset", type=str, default="coco",
- help="Dataset, defalut is coco.")
- parser.add_argument("--epoch_size", type=int, default=500,
- help="Epoch size, default is 500.")
- parser.add_argument("--batch_size", type=int, default=32,
- help="Batch size, default is 32.")
- parser.add_argument("--pre_trained", type=str, default=None,
- help="Pretrained Checkpoint file path.")
- parser.add_argument("--pre_trained_epoch_size", type=int,
- default=0, help="Pretrained epoch size.")
- parser.add_argument("--save_checkpoint_epochs", type=int,
- default=10, help="Save checkpoint epochs, default is 10.")
- parser.add_argument("--loss_scale", type=int, default=1024,
- help="Loss scale, default is 1024.")
- parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
- help="Filter weight parameters, default is False.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend", device_id=args_opt.device_id)
-
- if args_opt.distribute:
- device_num = args_opt.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
- device_num=device_num)
- init()
- rank = args_opt.device_id % device_num
- else:
- rank = 0
- device_num = 1
-
- print("Start create dataset!")
-
- # It will generate mindrecord file in args_opt.mindrecord_dir,
- # and the file name is ssd.mindrecord0, 1, ... file_num.
-
- prefix = "ssd.mindrecord"
- mindrecord_dir = config.mindrecord_dir
- mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
- if not os.path.exists(mindrecord_file):
- if not os.path.isdir(mindrecord_dir):
- os.makedirs(mindrecord_dir)
- if args_opt.dataset == "coco":
- if os.path.isdir(config.coco_root):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("coco", True, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("coco_root not exits.")
- elif args_opt.dataset == "voc":
- if os.path.isdir(config.voc_dir):
- print("Create Mindrecord.")
- voc_data_to_mindrecord(mindrecord_dir, True, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("voc_dir not exits.")
- else:
- if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("other", True, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("image_dir or anno_path not exits.")
-
- if not args_opt.only_create_dataset:
- loss_scale = float(args_opt.loss_scale)
-
- # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
- dataset = create_ssd_dataset(mindrecord_file, repeat_num=1,
- batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
-
- dataset_size = dataset.get_dataset_size()
- print("Create dataset done!")
-
- backbone = ssd_ghostnet()
- ssd = SSD300(backbone=backbone, config=config)
- # print(ssd)
- net = SSDWithLossCell(ssd, config)
- init_net_param(net)
-
- # checkpoint
- ckpt_config = CheckpointConfig(
- save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs, keep_checkpoint_max=60)
- ckpoint_cb = ModelCheckpoint(
- prefix="ssd", directory=None, config=ckpt_config)
-
- if args_opt.pre_trained:
- if args_opt.pre_trained_epoch_size <= 0:
- raise KeyError(
- "pre_trained_epoch_size must be greater than 0.")
- param_dict = load_checkpoint(args_opt.pre_trained)
- if args_opt.filter_weight:
- filter_checkpoint_parameter(param_dict)
- load_param_into_net(net, param_dict)
-
- lr = Tensor(get_lr(global_step=config.global_step,
- lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
- warmup_epochs=config.warmup_epochs,
- total_epochs=args_opt.epoch_size,
- steps_per_epoch=dataset_size))
- opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
- config.momentum, config.weight_decay, loss_scale)
- net = TrainingWrapper(net, opt, loss_scale)
-
- callback = [TimeMonitor(data_size=dataset_size),
- LossMonitor(), ckpoint_cb]
-
- model = Model(net)
- dataset_sink_mode = False
- if args_opt.mode == "sink":
- print("In sink mode, one epoch return a loss.")
- dataset_sink_mode = True
- print("Start train SSD, the first epoch will be slower because of the graph compilation.")
- model.train(args_opt.epoch_size, dataset,
- callbacks=callback, dataset_sink_mode=dataset_sink_mode)
-
-
- if __name__ == '__main__':
- main()
|