|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "minddata/dataset/include/transforms.h"
- #include "minddata/dataset/include/vision.h"
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/image_utils.h"
- #endif
- // Kernel image headers (in alphabetical order)
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/auto_contrast_op.h"
- #include "minddata/dataset/kernels/image/bounding_box_augment_op.h"
- #endif
- #include "minddata/dataset/kernels/image/center_crop_op.h"
- #include "minddata/dataset/kernels/image/crop_op.h"
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/cutmix_batch_op.h"
- #include "minddata/dataset/kernels/image/cut_out_op.h"
- #endif
- #include "minddata/dataset/kernels/image/decode_op.h"
- #ifdef ENABLE_ACL
- #include "minddata/dataset/kernels/image/dvpp/dvpp_decode_resize_crop_jpeg_op.h"
- #endif
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/equalize_op.h"
- #include "minddata/dataset/kernels/image/hwc_to_chw_op.h"
- #include "minddata/dataset/kernels/image/invert_op.h"
- #include "minddata/dataset/kernels/image/mixup_batch_op.h"
- #endif
- #include "minddata/dataset/kernels/image/normalize_op.h"
- #include "minddata/dataset/kernels/image/normalize_pad_op.h"
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/pad_op.h"
- #include "minddata/dataset/kernels/image/random_affine_op.h"
- #include "minddata/dataset/kernels/image/random_color_op.h"
- #include "minddata/dataset/kernels/image/random_color_adjust_op.h"
- #include "minddata/dataset/kernels/image/random_crop_and_resize_op.h"
- #include "minddata/dataset/kernels/image/random_crop_op.h"
- #include "minddata/dataset/kernels/image/random_crop_decode_resize_op.h"
- #include "minddata/dataset/kernels/image/random_crop_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/random_horizontal_flip_op.h"
- #include "minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/random_posterize_op.h"
- #include "minddata/dataset/kernels/image/random_resize_op.h"
- #include "minddata/dataset/kernels/image/random_resize_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/random_rotation_op.h"
- #include "minddata/dataset/kernels/image/random_select_subpolicy_op.h"
- #include "minddata/dataset/kernels/image/random_sharpness_op.h"
- #include "minddata/dataset/kernels/image/random_solarize_op.h"
- #include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
- #include "minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/rescale_op.h"
- #endif
- #include "minddata/dataset/kernels/image/resize_op.h"
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/kernels/image/resize_with_bbox_op.h"
- #include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
- #include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
- #include "minddata/dataset/kernels/image/soft_dvpp/soft_dvpp_decode_random_crop_resize_jpeg_op.h"
- #include "minddata/dataset/kernels/image/soft_dvpp/soft_dvpp_decode_resize_jpeg_op.h"
- #include "minddata/dataset/kernels/image/swap_red_blue_op.h"
- #include "minddata/dataset/kernels/image/uniform_aug_op.h"
- #endif
-
- namespace mindspore {
- namespace dataset {
-
- // Transform operations for computer vision.
- namespace vision {
- #ifndef ENABLE_ANDROID
- // FUNCTIONS TO CREATE VISION TRANSFORM OPERATIONS
- // (In alphabetical order)
-
- // Function to create AutoContrastOperation.
- std::shared_ptr<AutoContrastOperation> AutoContrast(float cutoff, std::vector<uint32_t> ignore) {
- auto op = std::make_shared<AutoContrastOperation>(cutoff, ignore);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create BoundingBoxAugmentOperation.
- std::shared_ptr<BoundingBoxAugmentOperation> BoundingBoxAugment(std::shared_ptr<TensorOperation> transform,
- float ratio) {
- auto op = std::make_shared<BoundingBoxAugmentOperation>(transform, ratio);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #endif
-
- // Function to create CenterCropOperation.
- std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) {
- auto op = std::make_shared<CenterCropOperation>(size);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create CropOperation.
- std::shared_ptr<CropOperation> Crop(std::vector<int32_t> coordinates, std::vector<int32_t> size) {
- auto op = std::make_shared<CropOperation>(coordinates, size);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #ifndef ENABLE_ANDROID
- // Function to create CutMixBatchOperation.
- std::shared_ptr<CutMixBatchOperation> CutMixBatch(ImageBatchFormat image_batch_format, float alpha, float prob) {
- auto op = std::make_shared<CutMixBatchOperation>(image_batch_format, alpha, prob);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create CutOutOp.
- std::shared_ptr<CutOutOperation> CutOut(int32_t length, int32_t num_patches) {
- auto op = std::make_shared<CutOutOperation>(length, num_patches);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create DecodeOperation.
- std::shared_ptr<DecodeOperation> Decode(bool rgb) {
- auto op = std::make_shared<DecodeOperation>(rgb);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- #ifdef ENABLE_ACL
- // Function to create DvppDecodeResizeCropOperation.
- std::shared_ptr<DvppDecodeResizeCropOperation> DvppDecodeResizeCropJpeg(std::vector<uint32_t> crop,
- std::vector<uint32_t> resize) {
- auto op = std::make_shared<DvppDecodeResizeCropOperation>(crop, resize);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #endif
-
- // Function to create EqualizeOperation.
- std::shared_ptr<EqualizeOperation> Equalize() {
- auto op = std::make_shared<EqualizeOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create HwcToChwOperation.
- std::shared_ptr<HwcToChwOperation> HWC2CHW() {
- auto op = std::make_shared<HwcToChwOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create InvertOperation.
- std::shared_ptr<InvertOperation> Invert() {
- auto op = std::make_shared<InvertOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create MixUpBatchOperation.
- std::shared_ptr<MixUpBatchOperation> MixUpBatch(float alpha) {
- auto op = std::make_shared<MixUpBatchOperation>(alpha);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #endif
-
- // Function to create NormalizeOperation.
- std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std) {
- auto op = std::make_shared<NormalizeOperation>(mean, std);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- #ifndef ENABLE_ANDROID
- // Function to create NormalizePadOperation.
- std::shared_ptr<NormalizePadOperation> NormalizePad(const std::vector<float> &mean, const std::vector<float> &std,
- const std::string &dtype) {
- auto op = std::make_shared<NormalizePadOperation>(mean, std, dtype);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create PadOperation.
- std::shared_ptr<PadOperation> Pad(std::vector<int32_t> padding, std::vector<uint8_t> fill_value,
- BorderType padding_mode) {
- auto op = std::make_shared<PadOperation>(padding, fill_value, padding_mode);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomAffineOperation.
- std::shared_ptr<RandomAffineOperation> RandomAffine(const std::vector<float_t> °rees,
- const std::vector<float_t> &translate_range,
- const std::vector<float_t> &scale_range,
- const std::vector<float_t> &shear_ranges,
- InterpolationMode interpolation,
- const std::vector<uint8_t> &fill_value) {
- auto op = std::make_shared<RandomAffineOperation>(degrees, translate_range, scale_range, shear_ranges, interpolation,
- fill_value);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomColorOperation.
- std::shared_ptr<RandomColorOperation> RandomColor(float t_lb, float t_ub) {
- auto op = std::make_shared<RandomColorOperation>(t_lb, t_ub);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- std::shared_ptr<TensorOp> RandomColorOperation::Build() {
- std::shared_ptr<RandomColorOp> tensor_op = std::make_shared<RandomColorOp>(t_lb_, t_ub_);
- return tensor_op;
- }
-
- // Function to create RandomColorAdjustOperation.
- std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float> brightness,
- std::vector<float> contrast,
- std::vector<float> saturation, std::vector<float> hue) {
- auto op = std::make_shared<RandomColorAdjustOperation>(brightness, contrast, saturation, hue);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomCropOperation.
- std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding,
- bool pad_if_needed, std::vector<uint8_t> fill_value,
- BorderType padding_mode) {
- auto op = std::make_shared<RandomCropOperation>(size, padding, pad_if_needed, fill_value, padding_mode);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomCropDecodeResizeOperation.
- std::shared_ptr<RandomCropDecodeResizeOperation> RandomCropDecodeResize(std::vector<int32_t> size,
- std::vector<float> scale,
- std::vector<float> ratio,
- InterpolationMode interpolation,
- int32_t max_attempts) {
- auto op = std::make_shared<RandomCropDecodeResizeOperation>(size, scale, ratio, interpolation, max_attempts);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomCropWithBBoxOperation.
- std::shared_ptr<RandomCropWithBBoxOperation> RandomCropWithBBox(std::vector<int32_t> size, std::vector<int32_t> padding,
- bool pad_if_needed, std::vector<uint8_t> fill_value,
- BorderType padding_mode) {
- auto op = std::make_shared<RandomCropWithBBoxOperation>(size, padding, pad_if_needed, fill_value, padding_mode);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomHorizontalFlipOperation.
- std::shared_ptr<RandomHorizontalFlipOperation> RandomHorizontalFlip(float prob) {
- auto op = std::make_shared<RandomHorizontalFlipOperation>(prob);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomHorizontalFlipOperation.
- std::shared_ptr<RandomHorizontalFlipWithBBoxOperation> RandomHorizontalFlipWithBBox(float prob) {
- auto op = std::make_shared<RandomHorizontalFlipWithBBoxOperation>(prob);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomPosterizeOperation.
- std::shared_ptr<RandomPosterizeOperation> RandomPosterize(const std::vector<uint8_t> &bit_range) {
- auto op = std::make_shared<RandomPosterizeOperation>(bit_range);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomResizeOperation.
- std::shared_ptr<RandomResizeOperation> RandomResize(std::vector<int32_t> size) {
- auto op = std::make_shared<RandomResizeOperation>(size);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomResizeWithBBoxOperation.
- std::shared_ptr<RandomResizeWithBBoxOperation> RandomResizeWithBBox(std::vector<int32_t> size) {
- auto op = std::make_shared<RandomResizeWithBBoxOperation>(size);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomResizedCropOperation.
- std::shared_ptr<RandomResizedCropOperation> RandomResizedCrop(std::vector<int32_t> size, std::vector<float> scale,
- std::vector<float> ratio, InterpolationMode interpolation,
- int32_t max_attempts) {
- auto op = std::make_shared<RandomResizedCropOperation>(size, scale, ratio, interpolation, max_attempts);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomResizedCropOperation.
- std::shared_ptr<RandomResizedCropWithBBoxOperation> RandomResizedCropWithBBox(std::vector<int32_t> size,
- std::vector<float> scale,
- std::vector<float> ratio,
- InterpolationMode interpolation,
- int32_t max_attempts) {
- auto op = std::make_shared<RandomResizedCropWithBBoxOperation>(size, scale, ratio, interpolation, max_attempts);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomRotationOperation.
- std::shared_ptr<RandomRotationOperation> RandomRotation(std::vector<float> degrees, InterpolationMode resample,
- bool expand, std::vector<float> center,
- std::vector<uint8_t> fill_value) {
- auto op = std::make_shared<RandomRotationOperation>(degrees, resample, expand, center, fill_value);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomSharpnessOperation.
- std::shared_ptr<RandomSharpnessOperation> RandomSharpness(std::vector<float> degrees) {
- auto op = std::make_shared<RandomSharpnessOperation>(degrees);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomSolarizeOperation.
- std::shared_ptr<RandomSolarizeOperation> RandomSolarize(std::vector<uint8_t> threshold) {
- auto op = std::make_shared<RandomSolarizeOperation>(threshold);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomSelectSubpolicyOperation.
- std::shared_ptr<RandomSelectSubpolicyOperation> RandomSelectSubpolicy(
- std::vector<std::vector<std::pair<std::shared_ptr<TensorOperation>, double>>> policy) {
- auto op = std::make_shared<RandomSelectSubpolicyOperation>(policy);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomVerticalFlipOperation.
- std::shared_ptr<RandomVerticalFlipOperation> RandomVerticalFlip(float prob) {
- auto op = std::make_shared<RandomVerticalFlipOperation>(prob);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RandomVerticalFlipWithBBoxOperation.
- std::shared_ptr<RandomVerticalFlipWithBBoxOperation> RandomVerticalFlipWithBBox(float prob) {
- auto op = std::make_shared<RandomVerticalFlipWithBBoxOperation>(prob);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RescaleOperation.
- std::shared_ptr<RescaleOperation> Rescale(float rescale, float shift) {
- auto op = std::make_shared<RescaleOperation>(rescale, shift);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- #endif
- // Function to create ResizeOperation.
- std::shared_ptr<ResizeOperation> Resize(std::vector<int32_t> size, InterpolationMode interpolation) {
- auto op = std::make_shared<ResizeOperation>(size, interpolation);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- #ifdef ENABLE_ANDROID
- // Function to create RotateOperation.
- std::shared_ptr<RotateOperation> Rotate() {
- auto op = std::make_shared<RotateOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #endif
-
- #ifndef ENABLE_ANDROID
- // Function to create ResizeWithBBoxOperation.
- std::shared_ptr<ResizeWithBBoxOperation> ResizeWithBBox(std::vector<int32_t> size, InterpolationMode interpolation) {
- auto op = std::make_shared<ResizeWithBBoxOperation>(size, interpolation);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RgbaToBgrOperation.
- std::shared_ptr<RgbaToBgrOperation> RGBA2BGR() {
- auto op = std::make_shared<RgbaToBgrOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create RgbaToRgbOperation.
- std::shared_ptr<RgbaToRgbOperation> RGBA2RGB() {
- auto op = std::make_shared<RgbaToRgbOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create SoftDvppDecodeRandomCropResizeJpegOperation.
- std::shared_ptr<SoftDvppDecodeRandomCropResizeJpegOperation> SoftDvppDecodeRandomCropResizeJpeg(
- std::vector<int32_t> size, std::vector<float> scale, std::vector<float> ratio, int32_t max_attempts) {
- auto op = std::make_shared<SoftDvppDecodeRandomCropResizeJpegOperation>(size, scale, ratio, max_attempts);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create SoftDvppDecodeResizeJpegOperation.
- std::shared_ptr<SoftDvppDecodeResizeJpegOperation> SoftDvppDecodeResizeJpeg(std::vector<int32_t> size) {
- auto op = std::make_shared<SoftDvppDecodeResizeJpegOperation>(size);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create SwapRedBlueOperation.
- std::shared_ptr<SwapRedBlueOperation> SwapRedBlue() {
- auto op = std::make_shared<SwapRedBlueOperation>();
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
-
- // Function to create UniformAugOperation.
- std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
- int32_t num_ops) {
- auto op = std::make_shared<UniformAugOperation>(transforms, num_ops);
- // Input validation
- return op->ValidateParams() ? op : nullptr;
- }
- #endif
-
- /* ####################################### Derived TensorOperation classes ################################# */
-
- // (In alphabetical order)
- #ifndef ENABLE_ANDROID
-
- // AutoContrastOperation
- AutoContrastOperation::AutoContrastOperation(float cutoff, std::vector<uint32_t> ignore)
- : cutoff_(cutoff), ignore_(ignore) {}
-
- Status AutoContrastOperation::ValidateParams() {
- if (cutoff_ < 0 || cutoff_ > 100) {
- std::string err_msg = "AutoContrast: cutoff has to be between 0 and 100, got: " + std::to_string(cutoff_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
-
- for (uint32_t single_ignore : ignore_) {
- if (single_ignore > 255) {
- std::string err_msg =
- "AutoContrast: invalid size, ignore has to be between 0 and 255, got: " + std::to_string(single_ignore);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> AutoContrastOperation::Build() {
- std::shared_ptr<AutoContrastOp> tensor_op = std::make_shared<AutoContrastOp>(cutoff_, ignore_);
- return tensor_op;
- }
-
- // BoundingBoxAugmentOperation
- BoundingBoxAugmentOperation::BoundingBoxAugmentOperation(std::shared_ptr<TensorOperation> transform, float ratio)
- : transform_(transform), ratio_(ratio) {}
-
- Status BoundingBoxAugmentOperation::ValidateParams() {
- RETURN_IF_NOT_OK(ValidateVectorTransforms("BoundingBoxAugment", {transform_}));
- RETURN_IF_NOT_OK(ValidateProbability("BoundingBoxAugment", ratio_));
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> BoundingBoxAugmentOperation::Build() {
- std::shared_ptr<BoundingBoxAugmentOp> tensor_op = std::make_shared<BoundingBoxAugmentOp>(transform_->Build(), ratio_);
- return tensor_op;
- }
- #endif
-
- // CenterCropOperation
- CenterCropOperation::CenterCropOperation(std::vector<int32_t> size) : size_(size) {}
-
- Status CenterCropOperation::ValidateParams() {
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "CenterCrop: size vector has incorrect size.";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // We have to limit crop size due to library restrictions, optimized to only iterate over size_ once
- for (int32_t i = 0; i < size_.size(); ++i) {
- if (size_[i] <= 0) {
- std::string err_msg = "CenterCrop: invalid size, size must be greater than 0, got: " + std::to_string(size_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[i] == INT_MAX) {
- std::string err_msg = "CenterCrop: invalid size, size too large, got: " + std::to_string(size_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> CenterCropOperation::Build() {
- int32_t crop_height = size_[0];
- int32_t crop_width = size_[0];
-
- // User has specified crop_width.
- if (size_.size() == 2) {
- crop_width = size_[1];
- }
-
- std::shared_ptr<CenterCropOp> tensor_op = std::make_shared<CenterCropOp>(crop_height, crop_width);
- return tensor_op;
- }
-
- // CropOperation.
- CropOperation::CropOperation(std::vector<int32_t> coordinates, std::vector<int32_t> size)
- : coordinates_(coordinates), size_(size) {}
-
- Status CropOperation::ValidateParams() {
- // Do some input validation.
- if (coordinates_.size() != 2) {
- std::string err_msg = "Crop: coordinates must be a vector of two values";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // we don't check the coordinates here because we don't have access to image dimensions
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "Crop: size must be a vector of one or two values";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // We have to limit crop size due to library restrictions, optimized to only iterate over size_ once
- for (int32_t i = 0; i < size_.size(); ++i) {
- if (size_[i] <= 0) {
- std::string err_msg = "Crop: invalid size, size must be greater than 0, got: " + std::to_string(size_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[i] == INT_MAX) {
- std::string err_msg = "Crop: invalid size, size too large, got: " + std::to_string(size_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- for (int32_t j = 0; j < coordinates_.size(); ++j) {
- if (coordinates_[j] < 0) {
- std::string err_msg =
- "Crop: invalid coordinates, coordinates must be greater than 0, got: " + std::to_string(coordinates_[j]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> CropOperation::Build() {
- int32_t x, y, height, width;
-
- x = coordinates_[0];
- y = coordinates_[1];
-
- height = size_[0];
- width = size_[0];
- // User has specified crop_width.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- std::shared_ptr<CropOp> tensor_op = std::make_shared<CropOp>(x, y, height, width);
- return tensor_op;
- }
-
- #ifndef ENABLE_ANDROID
- // CutMixBatchOperation
- CutMixBatchOperation::CutMixBatchOperation(ImageBatchFormat image_batch_format, float alpha, float prob)
- : image_batch_format_(image_batch_format), alpha_(alpha), prob_(prob) {}
-
- Status CutMixBatchOperation::ValidateParams() {
- if (alpha_ <= 0) {
- std::string err_msg =
- "CutMixBatch: alpha must be a positive floating value however it is: " + std::to_string(alpha_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (prob_ < 0 || prob_ > 1) {
- std::string err_msg = "CutMixBatch: Probability has to be between 0 and 1.";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> CutMixBatchOperation::Build() {
- std::shared_ptr<CutMixBatchOp> tensor_op = std::make_shared<CutMixBatchOp>(image_batch_format_, alpha_, prob_);
- return tensor_op;
- }
-
- // CutOutOperation
- CutOutOperation::CutOutOperation(int32_t length, int32_t num_patches) : length_(length), num_patches_(num_patches) {}
-
- Status CutOutOperation::ValidateParams() {
- if (length_ <= 0) {
- std::string err_msg = "CutOut: length must be positive, got: " + std::to_string(length_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (num_patches_ <= 0) {
- std::string err_msg = "CutOut: number of patches must be positive, got: " + std::to_string(num_patches_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> CutOutOperation::Build() {
- std::shared_ptr<CutOutOp> tensor_op = std::make_shared<CutOutOp>(length_, length_, num_patches_, false, 0, 0, 0);
- return tensor_op;
- }
-
- // DecodeOperation
- DecodeOperation::DecodeOperation(bool rgb) : rgb_(rgb) {}
-
- Status DecodeOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> DecodeOperation::Build() { return std::make_shared<DecodeOp>(rgb_); }
-
- // EqualizeOperation
- Status EqualizeOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> EqualizeOperation::Build() { return std::make_shared<EqualizeOp>(); }
-
- // HwcToChwOperation
- Status HwcToChwOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> HwcToChwOperation::Build() { return std::make_shared<HwcToChwOp>(); }
-
- // InvertOperation
- Status InvertOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> InvertOperation::Build() { return std::make_shared<InvertOp>(); }
-
- // MixUpOperation
- MixUpBatchOperation::MixUpBatchOperation(float alpha) : alpha_(alpha) {}
-
- Status MixUpBatchOperation::ValidateParams() {
- if (alpha_ <= 0) {
- std::string err_msg =
- "MixUpBatch: alpha must be a positive floating value however it is: " + std::to_string(alpha_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> MixUpBatchOperation::Build() { return std::make_shared<MixUpBatchOp>(alpha_); }
-
- #endif
-
- #ifdef ENABLE_ACL
- // DvppDecodeResizeCropOperation
- DvppDecodeResizeCropOperation::DvppDecodeResizeCropOperation(const std::vector<uint32_t> &crop,
- const std::vector<uint32_t> &resize)
- : crop_(crop), resize_(resize) {}
-
- Status DvppDecodeResizeCropOperation::ValidateParams() {
- // size
- if (crop_.empty() || crop_.size() > 2) {
- std::string err_msg = "DvppDecodeResizeCropJpeg: crop resolution must be a vector of one or two elements, got: " +
- std::to_string(crop_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (resize_.empty() || resize_.size() > 2) {
- std::string err_msg = "DvppDecodeResizeCropJpeg: resize resolution must be a vector of one or two elements, got: " +
- std::to_string(resize_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (*min_element(crop_.begin(), crop_.end()) < 32 || *max_element(crop_.begin(), crop_.end()) > 2048) {
- std::string err_msg = "Dvpp module supports crop image with resolution in range [32, 2048], got Crop Parameters: ";
- if (crop_.size() == 2)
- MS_LOG(ERROR) << err_msg << "[" << crop_[0] << ", " << crop_[1] << "]";
- else
- MS_LOG(ERROR) << err_msg << "[" << crop_[0] << ", " << crop_[0] << "]";
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (*min_element(resize_.begin(), resize_.end()) < 32 || *max_element(resize_.begin(), resize_.end()) > 2048) {
- std::string err_msg =
- "Dvpp module supports resize image with resolution in range [32, 2048], got Crop Parameters: ";
- if (resize_.size() == 2) {
- MS_LOG(ERROR) << err_msg << "[" << resize_[0] << ", " << resize_[1] << "]";
- } else {
- MS_LOG(ERROR) << err_msg << "[" << resize_[0] << ", " << resize_[0] << "]";
- }
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (crop_.size() < resize_.size()) {
- if (crop_[0] > MIN(resize_[0], resize_[1])) {
- std::string err_msg =
- "Each value of crop parameter must be smaller than corresponding resize parameter, for example: x[0] <= "
- "y[0], and x[1] <= y[1], please verify your input parameters.";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (crop_.size() > resize_.size()) {
- if (MAX(crop_[0], crop_[1]) > resize_[0]) {
- std::string err_msg =
- "Each value of crop parameter must be smaller than corresponding resize parameter, for example: x[0] <= "
- "y[0], and x[1] <= y[1], please verify your input parameters.";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (crop_.size() == resize_.size()) {
- for (int32_t i = 0; i < crop_.size(); ++i) {
- if (crop_[i] > resize_[i]) {
- std::string err_msg =
- "Each value of crop parameter must be smaller than corresponding resize parameter, for example: x[0] <= "
- "y[0], and x[1] <= y[1], please verify your input parameters.";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> DvppDecodeResizeCropOperation::Build() {
- // If size is a single value, the smaller edge of the image will be
- // resized to this value with the same image aspect ratio.
- uint32_t cropHeight, cropWidth, resizeHeight, resizeWidth;
- if (crop_.size() == 1) {
- cropHeight = crop_[0];
- cropWidth = crop_[0];
- } else {
- cropHeight = crop_[0];
- cropWidth = crop_[1];
- }
- // User specified the width value.
- if (resize_.size() == 1) {
- resizeHeight = resize_[0];
- resizeWidth = resize_[0];
- } else {
- resizeHeight = resize_[0];
- resizeWidth = resize_[1];
- }
- std::shared_ptr<DvppDecodeResizeCropJpegOp> tensor_op =
- std::make_shared<DvppDecodeResizeCropJpegOp>(cropHeight, cropWidth, resizeHeight, resizeWidth);
- return tensor_op;
- }
- #endif
-
- // NormalizeOperation
- NormalizeOperation::NormalizeOperation(std::vector<float> mean, std::vector<float> std) : mean_(mean), std_(std) {}
-
- Status NormalizeOperation::ValidateParams() {
- if (mean_.size() != 3) {
- std::string err_msg = "Normalize: mean vector has incorrect size: " + std::to_string(mean_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (std_.size() != 3) {
- std::string err_msg = "Normalize: std vector has incorrect size: " + std::to_string(std_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // check std/mean value
- for (int32_t i = 0; i < std_.size(); ++i) {
- if (std_[i] < 0.0f || std_[i] > 255.0f || CmpFloat(std_[i], 0.0f)) {
- std::string err_msg = "Normalize: std vector has incorrect value: " + std::to_string(std_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (mean_[i] < 0.0f || mean_[i] > 255.0f) {
- std::string err_msg = "Normalize: mean vector has incorrect value: " + std::to_string(mean_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> NormalizeOperation::Build() {
- return std::make_shared<NormalizeOp>(mean_[0], mean_[1], mean_[2], std_[0], std_[1], std_[2]);
- }
-
- #ifndef ENABLE_ANDROID
- // NormalizePadOperation
- NormalizePadOperation::NormalizePadOperation(const std::vector<float> &mean, const std::vector<float> &std,
- const std::string &dtype)
- : mean_(mean), std_(std), dtype_(dtype) {}
-
- Status NormalizePadOperation::ValidateParams() {
- if (mean_.size() != 3) {
- std::string err_msg = "NormalizePad: mean vector has incorrect size: " + std::to_string(mean_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (std_.size() != 3) {
- std::string err_msg = "NormalizePad: std vector has incorrect size: " + std::to_string(std_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // check std/mean value
- for (int32_t i = 0; i < std_.size(); ++i) {
- if (std_[i] < 0.0f || std_[i] > 255.0f || CmpFloat(std_[i], 0.0f)) {
- std::string err_msg = "NormalizePad: std vector has incorrect value: " + std::to_string(std_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (mean_[i] < 0.0f || mean_[i] > 255.0f) {
- std::string err_msg = "NormalizePad: mean vector has incorrect value: " + std::to_string(mean_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (dtype_ != "float32" && dtype_ != "float16") {
- std::string err_msg = "NormalizePad: dtype must be float32 or float16, but got: " + dtype_;
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> NormalizePadOperation::Build() {
- return std::make_shared<NormalizePadOp>(mean_[0], mean_[1], mean_[2], std_[0], std_[1], std_[2], dtype_);
- }
-
- // PadOperation
- PadOperation::PadOperation(std::vector<int32_t> padding, std::vector<uint8_t> fill_value, BorderType padding_mode)
- : padding_(padding), fill_value_(fill_value), padding_mode_(padding_mode) {}
-
- Status PadOperation::ValidateParams() {
- // padding
- RETURN_IF_NOT_OK(ValidateVectorPadding("Pad", padding_));
- // fill_value
- RETURN_IF_NOT_OK(ValidateVectorFillvalue("Pad", fill_value_));
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> PadOperation::Build() {
- int32_t pad_top, pad_bottom, pad_left, pad_right;
- switch (padding_.size()) {
- case 1:
- pad_left = padding_[0];
- pad_top = padding_[0];
- pad_right = padding_[0];
- pad_bottom = padding_[0];
- break;
- case 2:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[0];
- pad_bottom = padding_[1];
- break;
- default:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[2];
- pad_bottom = padding_[3];
- }
- uint8_t fill_r, fill_g, fill_b;
-
- fill_r = fill_value_[0];
- fill_g = fill_value_[0];
- fill_b = fill_value_[0];
-
- if (fill_value_.size() == 3) {
- fill_r = fill_value_[0];
- fill_g = fill_value_[1];
- fill_b = fill_value_[2];
- }
-
- std::shared_ptr<PadOp> tensor_op =
- std::make_shared<PadOp>(pad_top, pad_bottom, pad_left, pad_right, padding_mode_, fill_r, fill_g, fill_b);
- return tensor_op;
- }
-
- // RandomAffineOperation
- RandomAffineOperation::RandomAffineOperation(const std::vector<float_t> °rees,
- const std::vector<float_t> &translate_range,
- const std::vector<float_t> &scale_range,
- const std::vector<float_t> &shear_ranges, InterpolationMode interpolation,
- const std::vector<uint8_t> &fill_value)
- : degrees_(degrees),
- translate_range_(translate_range),
- scale_range_(scale_range),
- shear_ranges_(shear_ranges),
- interpolation_(interpolation),
- fill_value_(fill_value) {
- random_op_ = true;
- }
-
- Status RandomAffineOperation::ValidateParams() {
- // Degrees
- if (degrees_.size() != 2) {
- std::string err_msg =
- "RandomAffine: degrees expecting size 2, got: degrees.size() = " + std::to_string(degrees_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (degrees_[0] > degrees_[1]) {
- std::string err_msg =
- "RandomAffine: minimum of degrees range is greater than maximum: min = " + std::to_string(degrees_[0]) +
- ", max = " + std::to_string(degrees_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // Translate
- if (translate_range_.size() != 2 && translate_range_.size() != 4) {
- std::string err_msg = "RandomAffine: translate_range expecting size 2 or 4, got: translate_range.size() = " +
- std::to_string(translate_range_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_[0] > translate_range_[1]) {
- std::string err_msg = "RandomAffine: minimum of translate range on x is greater than maximum: min = " +
- std::to_string(translate_range_[0]) + ", max = " + std::to_string(translate_range_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_[0] < -1 || translate_range_[0] > 1) {
- std::string err_msg = "RandomAffine: minimum of translate range on x is out of range of [-1, 1], value = " +
- std::to_string(translate_range_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_[1] < -1 || translate_range_[1] > 1) {
- std::string err_msg = "RandomAffine: maximum of translate range on x is out of range of [-1, 1], value = " +
- std::to_string(translate_range_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_.size() == 4) {
- if (translate_range_[2] > translate_range_[3]) {
- std::string err_msg = "RandomAffine: minimum of translate range on y is greater than maximum: min = " +
- std::to_string(translate_range_[2]) + ", max = " + std::to_string(translate_range_[3]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_[2] < -1 || translate_range_[2] > 1) {
- std::string err_msg = "RandomAffine: minimum of translate range on y is out of range of [-1, 1], value = " +
- std::to_string(translate_range_[2]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (translate_range_[3] < -1 || translate_range_[3] > 1) {
- std::string err_msg = "RandomAffine: maximum of translate range on y is out of range of [-1, 1], value = " +
- std::to_string(translate_range_[3]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- // Scale
- if (scale_range_.size() != 2) {
- std::string err_msg = "RandomAffine: scale_range vector has incorrect size: scale_range.size() = " +
- std::to_string(scale_range_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_range_[0] < 0) {
- std::string err_msg =
- "RandomAffine: min scale range must be greater than or equal to 0, got: " + std::to_string(scale_range_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_range_[1] <= 0) {
- std::string err_msg =
- "RandomAffine: max scale range must be greater than 0, got: " + std::to_string(scale_range_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_range_[0] > scale_range_[1]) {
- std::string err_msg =
- "RandomAffine: minimum of scale range is greater than maximum: min = " + std::to_string(scale_range_[0]) +
- ", max = " + std::to_string(scale_range_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // Shear
- if (shear_ranges_.size() != 2 && shear_ranges_.size() != 4) {
- std::string err_msg = "RandomAffine: shear_ranges expecting size 2 or 4, got: shear_ranges.size() = " +
- std::to_string(shear_ranges_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (shear_ranges_[0] > shear_ranges_[1]) {
- std::string err_msg = "RandomAffine: minimum of horizontal shear range is greater than maximum: min = " +
- std::to_string(shear_ranges_[0]) + ", max = " + std::to_string(shear_ranges_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (shear_ranges_.size() == 4 && shear_ranges_[2] > shear_ranges_[3]) {
- std::string err_msg = "RandomAffine: minimum of vertical shear range is greater than maximum: min = " +
- std::to_string(shear_ranges_[2]) + ", max = " + std::to_string(scale_range_[3]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // Fill Value
- if (fill_value_.size() != 3) {
- std::string err_msg =
- "RandomAffine: fill_value vector has incorrect size: fill_value.size() = " + std::to_string(fill_value_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < fill_value_.size(); ++i) {
- if (fill_value_[i] < 0 || fill_value_[i] > 255) {
- std::string err_msg =
- "RandomAffine: fill_value has to be between 0 and 255, got:" + std::to_string(fill_value_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomAffineOperation::Build() {
- if (shear_ranges_.size() == 2) {
- shear_ranges_.resize(4);
- }
- if (translate_range_.size() == 2) {
- translate_range_.resize(4);
- }
- auto tensor_op = std::make_shared<RandomAffineOp>(degrees_, translate_range_, scale_range_, shear_ranges_,
- interpolation_, fill_value_);
- return tensor_op;
- }
-
- // RandomColorOperation.
- RandomColorOperation::RandomColorOperation(float t_lb, float t_ub) : t_lb_(t_lb), t_ub_(t_ub) { random_op_ = true; }
-
- Status RandomColorOperation::ValidateParams() {
- // Do some input validation.
- if (t_lb_ < 0 || t_ub_ < 0) {
- std::string err_msg =
- "RandomColor: lower bound or upper bound must be greater than or equal to 0, got t_lb: " + std::to_string(t_lb_) +
- ", t_ub: " + std::to_string(t_ub_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (t_lb_ > t_ub_) {
- std::string err_msg =
- "RandomColor: lower bound must be less or equal to upper bound, got t_lb: " + std::to_string(t_lb_) +
- ", t_ub: " + std::to_string(t_ub_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- // RandomColorAdjustOperation.
- RandomColorAdjustOperation::RandomColorAdjustOperation(std::vector<float> brightness, std::vector<float> contrast,
- std::vector<float> saturation, std::vector<float> hue)
- : brightness_(brightness), contrast_(contrast), saturation_(saturation), hue_(hue) {
- random_op_ = true;
- }
-
- Status RandomColorAdjustOperation::ValidateParams() {
- // brightness
- if (brightness_.empty() || brightness_.size() > 2) {
- std::string err_msg =
- "RandomColorAdjust: brightness must be a vector of one or two values, got: " + std::to_string(brightness_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < brightness_.size(); ++i) {
- if (brightness_[i] < 0) {
- std::string err_msg =
- "RandomColorAdjust: brightness must be greater than or equal to 0, got: " + std::to_string(brightness_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (brightness_.size() == 2 && (brightness_[0] > brightness_[1])) {
- std::string err_msg = "RandomColorAdjust: brightness lower bound must be less or equal to upper bound, got lb: " +
- std::to_string(brightness_[0]) + ", ub: " + std::to_string(brightness_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // contrast
- if (contrast_.empty() || contrast_.size() > 2) {
- std::string err_msg =
- "RandomColorAdjust: contrast must be a vector of one or two values, got: " + std::to_string(contrast_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < contrast_.size(); ++i) {
- if (contrast_[i] < 0) {
- std::string err_msg =
- "RandomColorAdjust: contrast must be greater than or equal to 0, got: " + std::to_string(contrast_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (contrast_.size() == 2 && (contrast_[0] > contrast_[1])) {
- std::string err_msg = "RandomColorAdjust: contrast lower bound must be less or equal to upper bound, got lb: " +
- std::to_string(contrast_[0]) + ", ub: " + std::to_string(contrast_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // saturation
- if (saturation_.empty() || saturation_.size() > 2) {
- std::string err_msg =
- "RandomColorAdjust: saturation must be a vector of one or two values, got: " + std::to_string(saturation_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < saturation_.size(); ++i) {
- if (saturation_[i] < 0) {
- std::string err_msg =
- "RandomColorAdjust: saturation must be greater than or equal to 0, got: " + std::to_string(saturation_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (saturation_.size() == 2 && (saturation_[0] > saturation_[1])) {
- std::string err_msg = "RandomColorAdjust: saturation lower bound must be less or equal to upper bound, got lb: " +
- std::to_string(saturation_[0]) + ", ub: " + std::to_string(saturation_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // hue
- if (hue_.empty() || hue_.size() > 2) {
- std::string err_msg =
- "RandomColorAdjust: hue must be a vector of one or two values, got: " + std::to_string(hue_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < hue_.size(); ++i) {
- if (hue_[i] < -0.5 || hue_[i] > 0.5) {
- std::string err_msg = "RandomColorAdjust: hue has to be between -0.5 and 0.5, got: " + std::to_string(hue_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (hue_.size() == 2 && (hue_[0] > hue_[1])) {
- std::string err_msg =
- "RandomColorAdjust: hue lower bound must be less or equal to upper bound, got lb: " + std::to_string(hue_[0]) +
- ", ub: " + std::to_string(hue_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomColorAdjustOperation::Build() {
- float brightness_lb, brightness_ub, contrast_lb, contrast_ub, saturation_lb, saturation_ub, hue_lb, hue_ub;
-
- brightness_lb = brightness_[0];
- brightness_ub = brightness_[0];
-
- if (brightness_.size() == 2) brightness_ub = brightness_[1];
-
- contrast_lb = contrast_[0];
- contrast_ub = contrast_[0];
-
- if (contrast_.size() == 2) contrast_ub = contrast_[1];
-
- saturation_lb = saturation_[0];
- saturation_ub = saturation_[0];
-
- if (saturation_.size() == 2) saturation_ub = saturation_[1];
-
- hue_lb = hue_[0];
- hue_ub = hue_[0];
-
- if (hue_.size() == 2) hue_ub = hue_[1];
-
- std::shared_ptr<RandomColorAdjustOp> tensor_op = std::make_shared<RandomColorAdjustOp>(
- brightness_lb, brightness_ub, contrast_lb, contrast_ub, saturation_lb, saturation_ub, hue_lb, hue_ub);
- return tensor_op;
- }
-
- // RandomCropOperation
- RandomCropOperation::RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding, bool pad_if_needed,
- std::vector<uint8_t> fill_value, BorderType padding_mode)
- : TensorOperation(true),
- size_(size),
- padding_(padding),
- pad_if_needed_(pad_if_needed),
- fill_value_(fill_value),
- padding_mode_(padding_mode) {
- random_op_ = true;
- }
-
- Status RandomCropOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "RandomCrop: size must be a vector of one or two values";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("RandomCrop", size_));
- // padding
- RETURN_IF_NOT_OK(ValidateVectorPadding("RandomCrop", padding_));
- // fill_value
- RETURN_IF_NOT_OK(ValidateVectorFillvalue("RandomCrop", fill_value_));
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomCropOperation::Build() {
- int32_t crop_height = size_[0];
- int32_t crop_width = size_[0];
-
- // User has specified the crop_width value.
- if (size_.size() == 2) {
- crop_width = size_[1];
- }
-
- int32_t pad_top, pad_bottom, pad_left, pad_right;
- switch (padding_.size()) {
- case 1:
- pad_left = padding_[0];
- pad_top = padding_[0];
- pad_right = padding_[0];
- pad_bottom = padding_[0];
- break;
- case 2:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[0];
- pad_bottom = padding_[1];
- break;
- default:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[2];
- pad_bottom = padding_[3];
- }
-
- uint8_t fill_r, fill_g, fill_b;
- fill_r = fill_value_[0];
- fill_g = fill_value_[0];
- fill_b = fill_value_[0];
-
- if (fill_value_.size() == 3) {
- fill_r = fill_value_[0];
- fill_g = fill_value_[1];
- fill_b = fill_value_[2];
- }
-
- auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
- padding_mode_, pad_if_needed_, fill_r, fill_g, fill_b);
- return tensor_op;
- }
-
- // RandomCropDecodeResizeOperation
- RandomCropDecodeResizeOperation::RandomCropDecodeResizeOperation(std::vector<int32_t> size, std::vector<float> scale,
- std::vector<float> ratio,
- InterpolationMode interpolation, int32_t max_attempts)
- : TensorOperation(true),
- size_(size),
- scale_(scale),
- ratio_(ratio),
- interpolation_(interpolation),
- max_attempts_(max_attempts) {}
-
- Status RandomCropDecodeResizeOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "RandomCropDecodeResize: size vector has incorrect size: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("RandomCropDecodeResize", size_));
- // rescale
- if (scale_.empty() || scale_.size() != 2) {
- std::string err_msg = "RandomCropDecodeResize: scale vector has incorrect size: " + std::to_string(scale_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[0] < 0) {
- std::string err_msg = "RandomCropDecodeResize: invalid scale, min scale must be greater than or equal to 0, got: " +
- std::to_string(scale_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] <= 0) {
- std::string err_msg =
- "RandomCropDecodeResize: invalid scale, max scale must be greater than 0, got: " + std::to_string(scale_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[0] > scale_[1]) {
- std::string err_msg = "RandomCropDecodeResize: scale should be in (min,max) format. Got (max,min).";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // ratio
- if (ratio_.empty() || ratio_.size() != 2) {
- std::string err_msg = "RandomCropDecodeResize: ratio vector has incorrect size: " + std::to_string(ratio_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < ratio_.size(); ++i) {
- if (ratio_[i] <= 0) {
- std::string err_msg =
- "RandomCropDecodeResize: invalid ratio, ratio must be greater than 0, got: " + std::to_string(ratio_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (ratio_[0] > ratio_[1]) {
- std::string err_msg = "RandomCropDecodeResize: ratio should be in (min,max) format. Got (max,min).";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // max_attempts
- if (max_attempts_ < 1) {
- std::string err_msg =
- "RandomCropDecodeResize: max_attempts must be greater than or equal to 1, got: " + std::to_string(max_attempts_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomCropDecodeResizeOperation::Build() {
- int32_t crop_height = size_[0];
- int32_t crop_width = size_[0];
-
- // User has specified the crop_width value.
- if (size_.size() == 2) {
- crop_width = size_[1];
- }
-
- float scale_lower_bound = scale_[0];
- float scale_upper_bound = scale_[1];
-
- float aspect_lower_bound = ratio_[0];
- float aspect_upper_bound = ratio_[1];
-
- auto tensor_op =
- std::make_shared<RandomCropDecodeResizeOp>(crop_height, crop_width, scale_lower_bound, scale_upper_bound,
- aspect_lower_bound, aspect_upper_bound, interpolation_, max_attempts_);
- return tensor_op;
- }
-
- // RandomCropWithBBoxOperation
- RandomCropWithBBoxOperation::RandomCropWithBBoxOperation(std::vector<int32_t> size, std::vector<int32_t> padding,
- bool pad_if_needed, std::vector<uint8_t> fill_value,
- BorderType padding_mode)
- : TensorOperation(true),
- size_(size),
- padding_(padding),
- pad_if_needed_(pad_if_needed),
- fill_value_(fill_value),
- padding_mode_(padding_mode) {}
-
- Status RandomCropWithBBoxOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "RandomCropWithBBox: size must be a vector of one or two values";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("RandomCropWithBBox", size_));
- // padding
- RETURN_IF_NOT_OK(ValidateVectorPadding("RandomCropWithBBox", padding_));
- // fill_value
- RETURN_IF_NOT_OK(ValidateVectorFillvalue("RandomCropWithBBox", fill_value_));
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomCropWithBBoxOperation::Build() {
- int32_t crop_height = size_[0];
- int32_t crop_width = size_[0];
-
- // User has specified the crop_width value.
- if (size_.size() == 2) {
- crop_width = size_[1];
- }
-
- int32_t pad_top, pad_bottom, pad_left, pad_right;
- switch (padding_.size()) {
- case 1:
- pad_left = padding_[0];
- pad_top = padding_[0];
- pad_right = padding_[0];
- pad_bottom = padding_[0];
- break;
- case 2:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[0];
- pad_bottom = padding_[1];
- break;
- default:
- pad_left = padding_[0];
- pad_top = padding_[1];
- pad_right = padding_[2];
- pad_bottom = padding_[3];
- }
-
- uint8_t fill_r, fill_g, fill_b;
- fill_r = fill_value_[0];
- fill_g = fill_value_[0];
- fill_b = fill_value_[0];
-
- if (fill_value_.size() == 3) {
- fill_r = fill_value_[0];
- fill_g = fill_value_[1];
- fill_b = fill_value_[2];
- }
-
- auto tensor_op =
- std::make_shared<RandomCropWithBBoxOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
- padding_mode_, pad_if_needed_, fill_r, fill_g, fill_b);
- return tensor_op;
- }
-
- // RandomHorizontalFlipOperation
- RandomHorizontalFlipOperation::RandomHorizontalFlipOperation(float probability)
- : TensorOperation(true), probability_(probability) {}
-
- Status RandomHorizontalFlipOperation::ValidateParams() {
- RETURN_IF_NOT_OK(ValidateProbability("RandomHorizontalFlip", probability_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomHorizontalFlipOperation::Build() {
- std::shared_ptr<RandomHorizontalFlipOp> tensor_op = std::make_shared<RandomHorizontalFlipOp>(probability_);
- return tensor_op;
- }
-
- // RandomHorizontalFlipWithBBoxOperation
- RandomHorizontalFlipWithBBoxOperation::RandomHorizontalFlipWithBBoxOperation(float probability)
- : TensorOperation(true), probability_(probability) {}
-
- Status RandomHorizontalFlipWithBBoxOperation::ValidateParams() {
- RETURN_IF_NOT_OK(ValidateProbability("RandomHorizontalFlipWithBBox", probability_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomHorizontalFlipWithBBoxOperation::Build() {
- std::shared_ptr<RandomHorizontalFlipWithBBoxOp> tensor_op =
- std::make_shared<RandomHorizontalFlipWithBBoxOp>(probability_);
- return tensor_op;
- }
-
- // RandomPosterizeOperation
- RandomPosterizeOperation::RandomPosterizeOperation(const std::vector<uint8_t> &bit_range)
- : TensorOperation(true), bit_range_(bit_range) {}
-
- Status RandomPosterizeOperation::ValidateParams() {
- if (bit_range_.size() != 2) {
- std::string err_msg =
- "RandomPosterize: bit_range needs to be of size 2 but is of size: " + std::to_string(bit_range_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (bit_range_[0] < 1 || bit_range_[0] > 8) {
- std::string err_msg = "RandomPosterize: min_bit value is out of range [1-8]: " + std::to_string(bit_range_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (bit_range_[1] < 1 || bit_range_[1] > 8) {
- std::string err_msg = "RandomPosterize: max_bit value is out of range [1-8]: " + std::to_string(bit_range_[1]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (bit_range_[1] < bit_range_[0]) {
- std::string err_msg = "RandomPosterize: max_bit value is less than min_bit: max =" + std::to_string(bit_range_[1]) +
- ", min = " + std::to_string(bit_range_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomPosterizeOperation::Build() {
- std::shared_ptr<RandomPosterizeOp> tensor_op = std::make_shared<RandomPosterizeOp>(bit_range_);
- return tensor_op;
- }
-
- // RandomResizeOperation
- RandomResizeOperation::RandomResizeOperation(std::vector<int32_t> size) : TensorOperation(true), size_(size) {}
-
- Status RandomResizeOperation::ValidateParams() {
- // size
- if (size_.size() != 2 && size_.size() != 1) {
- std::string err_msg =
- "RandomResize: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[0] <= 0 || (size_.size() == 2 && size_[1] <= 0)) {
- std::string err_msg = "RandomResize: size must only contain positive integers.";
- MS_LOG(ERROR) << "RandomResize: size must only contain positive integers, got: " << size_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomResizeOperation::Build() {
- // If size is a single value, the smaller edge of the image will be
- // resized to this value with the same image aspect ratio.
- int32_t height = size_[0];
- int32_t width = 0;
-
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- std::shared_ptr<RandomResizeOp> tensor_op = std::make_shared<RandomResizeOp>(height, width);
- return tensor_op;
- }
-
- // RandomResizeWithBBoxOperation
- RandomResizeWithBBoxOperation::RandomResizeWithBBoxOperation(std::vector<int32_t> size)
- : TensorOperation(true), size_(size) {}
-
- Status RandomResizeWithBBoxOperation::ValidateParams() {
- // size
- if (size_.size() != 2 && size_.size() != 1) {
- std::string err_msg =
- "RandomResizeWithBBox: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[0] <= 0 || (size_.size() == 2 && size_[1] <= 0)) {
- std::string err_msg = "RandomResizeWithBBox: size must only contain positive integers.";
- MS_LOG(ERROR) << "RandomResizeWithBBox: size must only contain positive integers, got: " << size_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomResizeWithBBoxOperation::Build() {
- // If size is a single value, the smaller edge of the image will be
- // resized to this value with the same image aspect ratio.
- int32_t height = size_[0];
- int32_t width = 0;
-
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- std::shared_ptr<RandomResizeWithBBoxOp> tensor_op = std::make_shared<RandomResizeWithBBoxOp>(height, width);
- return tensor_op;
- }
-
- // RandomResizedCropOperation
- RandomResizedCropOperation::RandomResizedCropOperation(std::vector<int32_t> size, std::vector<float> scale,
- std::vector<float> ratio, InterpolationMode interpolation,
- int32_t max_attempts)
- : TensorOperation(true),
- size_(size),
- scale_(scale),
- ratio_(ratio),
- interpolation_(interpolation),
- max_attempts_(max_attempts) {}
-
- Status RandomResizedCropOperation::ValidateParams() {
- // size
- if (size_.size() != 2 && size_.size() != 1) {
- std::string err_msg =
- "RandomResizedCrop: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[0] <= 0 || (size_.size() == 2 && size_[1] <= 0)) {
- std::string err_msg = "RandomResizedCrop: size must only contain positive integers.";
- MS_LOG(ERROR) << "RandomResizedCrop: size must only contain positive integers, got: " << size_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // scale
- if (scale_.size() != 2) {
- std::string err_msg =
- "RandomResizedCrop: scale must be a vector of two values, got: " + std::to_string(scale_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[0] < 0) {
- std::string err_msg = "RandomResizedCrop: min scale must be greater than or equal to 0.";
- MS_LOG(ERROR) << "RandomResizedCrop: min scale must be greater than or equal to 0, got: " +
- std::to_string(scale_[0]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] <= 0) {
- std::string err_msg = "RandomResizedCrop: max scale must be greater than 0.";
- MS_LOG(ERROR) << "RandomResizedCrop: max scale must be greater than 0, got: " + std::to_string(scale_[1]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] < scale_[0]) {
- std::string err_msg = "RandomResizedCrop: scale must have a size of two in the format of (min, max).";
- MS_LOG(ERROR) << "RandomResizedCrop: scale must have a size of two in the format of (min, max), but got: "
- << scale_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // ratio
- if (ratio_.size() != 2) {
- std::string err_msg =
- "RandomResizedCrop: ratio must be a vector of two values, got: " + std::to_string(ratio_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[0] <= 0 || ratio_[1] <= 0) {
- std::string err_msg = "RandomResizedCrop: ratio must be greater than 0.";
- MS_LOG(ERROR) << "RandomResizedCrop: ratio must be greater than 0, got: " << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[1] < ratio_[0]) {
- std::string err_msg = "RandomResizedCrop: ratio must have a size of two in the format of (min, max).";
- MS_LOG(ERROR) << "RandomResizedCrop: ratio must have a size of two in the format of (min, max), but got: "
- << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // max_attempts
- if (max_attempts_ < 1) {
- std::string err_msg =
- "RandomResizedCrop: max_attempts must be greater than or equal to 1, got: " + std::to_string(max_attempts_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomResizedCropOperation::Build() {
- int32_t height = size_[0];
- int32_t width = size_[0];
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
- std::shared_ptr<RandomCropAndResizeOp> tensor_op = std::make_shared<RandomCropAndResizeOp>(
- height, width, scale_[0], scale_[1], ratio_[0], ratio_[1], interpolation_, max_attempts_);
- return tensor_op;
- }
-
- // RandomResizedCropWithBBoxOperation
- RandomResizedCropWithBBoxOperation::RandomResizedCropWithBBoxOperation(std::vector<int32_t> size,
- std::vector<float> scale,
- std::vector<float> ratio,
- InterpolationMode interpolation,
- int32_t max_attempts)
- : size_(size), scale_(scale), ratio_(ratio), interpolation_(interpolation), max_attempts_(max_attempts) {}
-
- Status RandomResizedCropWithBBoxOperation::ValidateParams() {
- // size
- if (size_.size() != 2 && size_.size() != 1) {
- std::string err_msg =
- "RandomResizedCropWithBBox: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[0] <= 0 || (size_.size() == 2 && size_[1] <= 0)) {
- std::string err_msg = "RandomResizedCropWithBBox: size must only contain positive integers.";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: size must only contain positive integers, got: " << size_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // scale
- if (scale_.size() != 2) {
- std::string err_msg =
- "RandomResizedCropWithBBox: scale must be a vector of two values, got: " + std::to_string(scale_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[0] < 0) {
- std::string err_msg = "RandomResizedCropWithBBox: min scale must be greater than or equal to 0.";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: min scale must be greater than or equal to 0, got: " +
- std::to_string(scale_[0]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] <= 0) {
- std::string err_msg = "RandomResizedCropWithBBox: max scale must be greater than 0.";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: max scale must be greater than 0, got: " + std::to_string(scale_[1]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] < scale_[0]) {
- std::string err_msg = "RandomResizedCropWithBBox: scale must have a size of two in the format of (min, max).";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: scale must have a size of two in the format of (min, max), but got: "
- << scale_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // ratio
- if (ratio_.size() != 2) {
- std::string err_msg =
- "RandomResizedCropWithBBox: ratio must be a vector of two values, got: " + std::to_string(ratio_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[0] <= 0 || ratio_[1] <= 0) {
- std::string err_msg = "RandomResizedCropWithBBox: ratio must be greater than 0.";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: ratio must be greater than 0, got: " << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[1] < ratio_[0]) {
- std::string err_msg = "RandomResizedCropWithBBox: ratio must have a size of two in the format of (min, max).";
- MS_LOG(ERROR) << "RandomResizedCropWithBBox: ratio must have a size of two in the format of (min, max), but got: "
- << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // max_attempts
- if (max_attempts_ < 1) {
- std::string err_msg = "RandomResizedCropWithBBox: max_attempts must be greater than or equal to 1, got: " +
- std::to_string(max_attempts_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomResizedCropWithBBoxOperation::Build() {
- int32_t height = size_[0];
- int32_t width = size_[0];
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
- std::shared_ptr<RandomCropAndResizeWithBBoxOp> tensor_op = std::make_shared<RandomCropAndResizeWithBBoxOp>(
- height, width, scale_[0], scale_[1], ratio_[0], ratio_[1], interpolation_, max_attempts_);
- return tensor_op;
- }
-
- // Function to create RandomRotationOperation.
- RandomRotationOperation::RandomRotationOperation(std::vector<float> degrees, InterpolationMode interpolation_mode,
- bool expand, std::vector<float> center,
- std::vector<uint8_t> fill_value)
- : TensorOperation(true),
- degrees_(degrees),
- interpolation_mode_(interpolation_mode),
- expand_(expand),
- center_(center),
- fill_value_(fill_value) {}
-
- Status RandomRotationOperation::ValidateParams() {
- // degrees
- if (degrees_.size() != 2 && degrees_.size() != 1) {
- std::string err_msg =
- "RandomRotation: degrees must be a vector of one or two values, got: " + std::to_string(degrees_.size());
- MS_LOG(ERROR) << "RandomRotation: degrees must be a vector of one or two values, got: " << degrees_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if ((degrees_[1] < degrees_[0]) && (degrees_.size() == 2)) {
- std::string err_msg = "RandomRotation: degrees must be in the format of (min, max), got: (" +
- std::to_string(degrees_[0]) + ", " + std::to_string(degrees_[1]) + ")";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- } else if ((degrees_[0] < 0) && degrees_.size() == 1) {
- std::string err_msg =
- "RandomRotation: if degrees only has one value, it must be greater than or equal to 0, got: " +
- std::to_string(degrees_[0]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // center
- if (center_.empty() || center_.size() != 2) {
- std::string err_msg =
- "RandomRotation: center must be a vector of two values, got: " + std::to_string(center_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // fill_value
- RETURN_IF_NOT_OK(ValidateVectorFillvalue("RandomRotation", fill_value_));
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomRotationOperation::Build() {
- float start_degree, end_degree;
- if (degrees_.size() == 1) {
- start_degree = -degrees_[0];
- end_degree = degrees_[0];
- } else if (degrees_.size() == 2) {
- start_degree = degrees_[0];
- end_degree = degrees_[1];
- }
-
- uint8_t fill_r, fill_g, fill_b;
- fill_r = fill_value_[0];
- fill_g = fill_value_[0];
- fill_b = fill_value_[0];
-
- if (fill_value_.size() == 3) {
- fill_r = fill_value_[0];
- fill_g = fill_value_[1];
- fill_b = fill_value_[2];
- }
-
- std::shared_ptr<RandomRotationOp> tensor_op = std::make_shared<RandomRotationOp>(
- start_degree, end_degree, center_[0], center_[1], interpolation_mode_, expand_, fill_r, fill_g, fill_b);
- return tensor_op;
- }
-
- // RandomSelectSubpolicyOperation.
- RandomSelectSubpolicyOperation::RandomSelectSubpolicyOperation(
- std::vector<std::vector<std::pair<std::shared_ptr<TensorOperation>, double>>> policy)
- : TensorOperation(true), policy_(policy) {}
-
- Status RandomSelectSubpolicyOperation::ValidateParams() {
- if (policy_.empty()) {
- std::string err_msg = "RandomSelectSubpolicy: policy must not be empty";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < policy_.size(); i++) {
- if (policy_[i].empty()) {
- std::string err_msg = "RandomSelectSubpolicy: policy[" + std::to_string(i) + "] must not be empty";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t j = 0; j < policy_[i].size(); j++) {
- if (policy_[i][j].first == nullptr) {
- std::string transform_pos = "[" + std::to_string(i) + "]" + "[" + std::to_string(j) + "]";
- std::string err_msg = "RandomSelectSubpolicy: transform in policy" + transform_pos + " must not be null";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (policy_[i][j].second < 0.0 || policy_[i][j].second > 1.0) {
- std::string transform_pos = "[" + std::to_string(i) + "]" + "[" + std::to_string(j) + "]";
- std::string err_msg = "RandomSelectSubpolicy: probability of transform in policy" + transform_pos +
- " must be between 0.0 and 1.0, got: " + std::to_string(policy_[i][j].second);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomSelectSubpolicyOperation::Build() {
- std::vector<Subpolicy> policy_tensor_ops;
- for (int32_t i = 0; i < policy_.size(); i++) {
- Subpolicy sub_policy_tensor_ops;
- for (int32_t j = 0; j < policy_[i].size(); j++) {
- sub_policy_tensor_ops.push_back(std::make_pair(policy_[i][j].first->Build(), policy_[i][j].second));
- }
- policy_tensor_ops.push_back(sub_policy_tensor_ops);
- }
- std::shared_ptr<RandomSelectSubpolicyOp> tensor_op = std::make_shared<RandomSelectSubpolicyOp>(policy_tensor_ops);
- return tensor_op;
- }
-
- // Function to create RandomSharpness.
- RandomSharpnessOperation::RandomSharpnessOperation(std::vector<float> degrees)
- : TensorOperation(true), degrees_(degrees) {}
-
- Status RandomSharpnessOperation::ValidateParams() {
- if (degrees_.size() != 2 || degrees_[0] < 0 || degrees_[1] < 0) {
- std::string err_msg = "RandomSharpness: degrees must be a vector of two values and greater than or equal to 0.";
- MS_LOG(ERROR) << "RandomSharpness: degrees must be a vector of two values and greater than or equal to 0, got: "
- << degrees_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (degrees_[1] < degrees_[0]) {
- std::string err_msg = "RandomSharpness: degrees must be in the format of (min, max).";
- MS_LOG(ERROR) << "RandomSharpness: degrees must be in the format of (min, max), got: " << degrees_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomSharpnessOperation::Build() {
- std::shared_ptr<RandomSharpnessOp> tensor_op = std::make_shared<RandomSharpnessOp>(degrees_[0], degrees_[1]);
- return tensor_op;
- }
-
- // RandomSolarizeOperation.
- RandomSolarizeOperation::RandomSolarizeOperation(std::vector<uint8_t> threshold)
- : TensorOperation(true), threshold_(threshold) {}
-
- Status RandomSolarizeOperation::ValidateParams() {
- if (threshold_.size() != 2) {
- std::string err_msg =
- "RandomSolarize: threshold must be a vector of two values, got: " + std::to_string(threshold_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- for (int32_t i = 0; i < threshold_.size(); ++i) {
- if (threshold_[i] < 0 || threshold_[i] > 255) {
- std::string err_msg =
- "RandomSolarize: threshold has to be between 0 and 255, got:" + std::to_string(threshold_[i]);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- }
- if (threshold_[0] > threshold_[1]) {
- std::string err_msg = "RandomSolarize: threshold must be passed in a (min, max) format";
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomSolarizeOperation::Build() {
- std::shared_ptr<RandomSolarizeOp> tensor_op = std::make_shared<RandomSolarizeOp>(threshold_);
- return tensor_op;
- }
-
- // RandomVerticalFlipOperation
- RandomVerticalFlipOperation::RandomVerticalFlipOperation(float probability)
- : TensorOperation(true), probability_(probability) {}
-
- Status RandomVerticalFlipOperation::ValidateParams() {
- RETURN_IF_NOT_OK(ValidateProbability("RandomVerticalFlip", probability_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomVerticalFlipOperation::Build() {
- std::shared_ptr<RandomVerticalFlipOp> tensor_op = std::make_shared<RandomVerticalFlipOp>(probability_);
- return tensor_op;
- }
-
- // RandomVerticalFlipWithBBoxOperation
- RandomVerticalFlipWithBBoxOperation::RandomVerticalFlipWithBBoxOperation(float probability)
- : TensorOperation(true), probability_(probability) {}
-
- Status RandomVerticalFlipWithBBoxOperation::ValidateParams() {
- RETURN_IF_NOT_OK(ValidateProbability("RandomVerticalFlipWithBBox", probability_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RandomVerticalFlipWithBBoxOperation::Build() {
- std::shared_ptr<RandomVerticalFlipWithBBoxOp> tensor_op =
- std::make_shared<RandomVerticalFlipWithBBoxOp>(probability_);
- return tensor_op;
- }
-
- // RescaleOperation
- RescaleOperation::RescaleOperation(float rescale, float shift) : rescale_(rescale), shift_(shift) {}
-
- Status RescaleOperation::ValidateParams() {
- if (rescale_ < 0) {
- std::string err_msg = "Rescale: rescale must be greater than or equal to 0, got: " + std::to_string(rescale_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> RescaleOperation::Build() {
- std::shared_ptr<RescaleOp> tensor_op = std::make_shared<RescaleOp>(rescale_, shift_);
- return tensor_op;
- }
-
- #endif
- // ResizeOperation
- ResizeOperation::ResizeOperation(std::vector<int32_t> size, InterpolationMode interpolation)
- : size_(size), interpolation_(interpolation) {}
-
- Status ResizeOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg = "Resize: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("Resize", size_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> ResizeOperation::Build() {
- // If size is a single value, the smaller edge of the image will be
- // resized to this value with the same image aspect ratio.
- int32_t height = size_[0];
- int32_t width = 0;
-
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- return std::make_shared<ResizeOp>(height, width, interpolation_);
- }
-
- #ifdef ENABLE_ANDROID
- // RotateOperation
- RotateOperation::RotateOperation() { rotate_op = std::make_shared<RotateOp>(0); }
-
- Status RotateOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> RotateOperation::Build() { return rotate_op; }
-
- void RotateOperation::setAngle(uint64_t angle_id) { rotate_op->setAngle(angle_id); }
- #endif
-
- #ifndef ENABLE_ANDROID
- // ResizeWithBBoxOperation
- ResizeWithBBoxOperation::ResizeWithBBoxOperation(std::vector<int32_t> size, InterpolationMode interpolation)
- : size_(size), interpolation_(interpolation) {}
-
- Status ResizeWithBBoxOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg =
- "ResizeWithBBox: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("Resize", size_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> ResizeWithBBoxOperation::Build() {
- int32_t height = size_[0];
- int32_t width = 0;
-
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- return std::make_shared<ResizeWithBBoxOp>(height, width, interpolation_);
- }
-
- // RgbaToBgrOperation.
- RgbaToBgrOperation::RgbaToBgrOperation() {}
-
- Status RgbaToBgrOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> RgbaToBgrOperation::Build() {
- std::shared_ptr<RgbaToBgrOp> tensor_op = std::make_shared<RgbaToBgrOp>();
- return tensor_op;
- }
-
- // RgbaToRgbOperation.
- RgbaToRgbOperation::RgbaToRgbOperation() {}
-
- Status RgbaToRgbOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> RgbaToRgbOperation::Build() {
- std::shared_ptr<RgbaToRgbOp> tensor_op = std::make_shared<RgbaToRgbOp>();
- return tensor_op;
- }
-
- // SoftDvppDecodeRandomCropResizeJpegOperation
- SoftDvppDecodeRandomCropResizeJpegOperation::SoftDvppDecodeRandomCropResizeJpegOperation(std::vector<int32_t> size,
- std::vector<float> scale,
- std::vector<float> ratio,
- int32_t max_attempts)
- : size_(size), scale_(scale), ratio_(ratio), max_attempts_(max_attempts) {}
-
- Status SoftDvppDecodeRandomCropResizeJpegOperation::ValidateParams() {
- // size
- if (size_.size() != 2 && size_.size() != 1) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values, got: " +
- std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (size_[0] <= 0 || (size_.size() == 2 && size_[1] <= 0)) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers.";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers, got: " << size_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // scale
- if (scale_.size() != 2) {
- std::string err_msg =
- "SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values, got: " + std::to_string(scale_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[0] < 0) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: min scale must be greater than or equal to 0.";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: min scale must be greater than or equal to 0, got: " +
- std::to_string(scale_[0]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] <= 0) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: max scale must be greater than 0.";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: max scale must be greater than 0, got: " +
- std::to_string(scale_[1]);
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (scale_[1] < scale_[0]) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max).";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max), but got: "
- << scale_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // ratio
- if (ratio_.size() != 2) {
- std::string err_msg =
- "SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values, got: " + std::to_string(ratio_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[0] <= 0 || ratio_[1] <= 0) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than 0.";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than 0, got: " << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- if (ratio_[1] < ratio_[0]) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max).";
- MS_LOG(ERROR) << "SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max), but got: "
- << ratio_;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // max_attempts
- if (max_attempts_ < 1) {
- std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1, got: " +
- std::to_string(max_attempts_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> SoftDvppDecodeRandomCropResizeJpegOperation::Build() {
- int32_t height = size_[0];
- int32_t width = size_[0];
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
-
- auto tensor_op = std::make_shared<SoftDvppDecodeRandomCropResizeJpegOp>(height, width, scale_[0], scale_[1],
- ratio_[0], ratio_[1], max_attempts_);
- return tensor_op;
- }
-
- // SoftDvppDecodeResizeJpegOperation
- SoftDvppDecodeResizeJpegOperation::SoftDvppDecodeResizeJpegOperation(std::vector<int32_t> size) : size_(size) {}
-
- Status SoftDvppDecodeResizeJpegOperation::ValidateParams() {
- // size
- if (size_.empty() || size_.size() > 2) {
- std::string err_msg =
- "SoftDvppDecodeResizeJpeg: size must be a vector of one or two values, got: " + std::to_string(size_.size());
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- RETURN_IF_NOT_OK(ValidateVectorPositive("SoftDvppDecodeResizeJpeg", size_));
-
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> SoftDvppDecodeResizeJpegOperation::Build() {
- // If size is a single value, the smaller edge of the image will be
- // resized to this value with the same image aspect ratio.
- int32_t height = size_[0];
- int32_t width = 0;
-
- // User specified the width value.
- if (size_.size() == 2) {
- width = size_[1];
- }
- std::shared_ptr<SoftDvppDecodeResizeJpegOp> tensor_op = std::make_shared<SoftDvppDecodeResizeJpegOp>(height, width);
- return tensor_op;
- }
-
- // SwapRedBlueOperation.
- SwapRedBlueOperation::SwapRedBlueOperation() {}
-
- Status SwapRedBlueOperation::ValidateParams() { return Status::OK(); }
-
- std::shared_ptr<TensorOp> SwapRedBlueOperation::Build() {
- std::shared_ptr<SwapRedBlueOp> tensor_op = std::make_shared<SwapRedBlueOp>();
- return tensor_op;
- }
-
- // UniformAugOperation
- UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops)
- : transforms_(transforms), num_ops_(num_ops) {}
-
- Status UniformAugOperation::ValidateParams() {
- // transforms
- RETURN_IF_NOT_OK(ValidateVectorTransforms("UniformAug", transforms_));
- if (num_ops_ > transforms_.size()) {
- std::string err_msg = "UniformAug: num_ops is greater than transforms size, but got: " + std::to_string(num_ops_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- // num_ops
- if (num_ops_ <= 0) {
- std::string err_msg = "UniformAug: num_ops must be greater than 0, but got: " + std::to_string(num_ops_);
- MS_LOG(ERROR) << err_msg;
- RETURN_STATUS_SYNTAX_ERROR(err_msg);
- }
- return Status::OK();
- }
-
- std::shared_ptr<TensorOp> UniformAugOperation::Build() {
- std::vector<std::shared_ptr<TensorOp>> tensor_ops;
- (void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
- [](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
- std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_);
- return tensor_op;
- }
- #endif
-
- } // namespace vision
- } // namespace dataset
- } // namespace mindspore
|