|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Tensor implementation."""
- import numpy as np
-
- from .._c_expression import Tensor as Tensor_
- from .._c_expression import MetaTensor
- from .._checkparam import check_type, check_typename
- from . import dtype as mstype
- from ._register_for_tensor import tensor_operator_registry
-
- __all__ = ['Tensor', 'MetaTensor', 'IndexedSlices', 'SparseTensor']
- np_types = (np.int8, np.int16, np.int32, np.int64,
- np.uint8, np.uint16, np.uint32, np.uint64, np.float16,
- np.float32, np.float64, np.bool_)
-
-
-
- class Tensor(Tensor_):
- """
- Tensor for data storage.
-
- Tensor inherits tensor object in C++ side, some functions are implemented
- in C++ side and some functions are implemented in Python layer.
-
- Args:
- input_data (Tensor, float, int, bool, tuple, list, numpy.ndarray): Input data of the tensor.
- dtype (:class:`mindspore.dtype`): Should be None, bool or numeric type defined in `mindspore.dtype`.
- The argument is used to define the data type of the output tensor. If it is None, the data type of the
- output tensor will be as same as the `input_data`. Default: None.
-
- Outputs:
- Tensor, with the same shape as `input_data`.
-
- Examples:
- >>> # init a tensor with input data
- >>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32)
- >>> assert isinstance(t1, Tensor)
- >>> assert t1.shape == (1, 2, 3)
- >>> assert t1.dtype == mindspore.float32
- >>>
- >>> # init a tensor with a float scalar
- >>> t2 = Tensor(0.1)
- >>> assert isinstance(t2, Tensor)
- >>> assert t2.dtype == mindspore.float64
- """
-
- def __init__(self, input_data, dtype=None):
- # If input data is numpy number, convert it to np array
- if isinstance(input_data, np_types):
- input_data = np.array(input_data)
-
- # If input_data is tuple/list/numpy.ndarray, it's support in check_type method.
- check_type('tensor input_data', input_data, (Tensor_, float, int))
- if dtype is not None:
- check_typename('dtype', dtype, mstype.number_type + (mstype.bool_,))
- if isinstance(input_data, np.ndarray) and (not input_data.flags['FORC']):
- input_data = np.ascontiguousarray(input_data)
- if dtype is None:
- Tensor_.__init__(self, input_data)
- else:
- Tensor_.__init__(self, input_data, dtype)
- self._virtual_flag = False
-
- def __repr__(self):
- return str(self.__str__())
-
- def __add__(self, other):
- out = tensor_operator_registry.get('__add__')(self, other)
- return out
-
- def __eq__(self, other):
- if not isinstance(other, (int, float, Tensor)):
- return False
- # bool type is not supported for `Equal` operator in backend.
- if self.dtype == mstype.bool_ or (isinstance(other, Tensor) and other.dtype == mstype.bool_):
- return Tensor(np.array(self.asnumpy() == other.asnumpy()))
- return tensor_operator_registry.get('__eq__')(self, other)
-
- def __ne__(self, other):
- if not isinstance(other, (int, float, Tensor)):
- return True
- # bool type is not supported for `NotEqual` operator in backend.
- if self.dtype == mstype.bool_ or (isinstance(other, Tensor) and other.dtype == mstype.bool_):
- return Tensor(np.array(self.asnumpy() != other.asnumpy()))
- return tensor_operator_registry.get('__ne__')(self, other)
-
- def __hash__(self):
- return hash(id(self))
-
- def __mul__(self, other):
- out = tensor_operator_registry.get('__mul__')(self, other)
- return out
-
- def __neg__(self):
- out = tensor_operator_registry.get('__neg__')(self)
- return out
-
- def __bool__(self):
- out = tensor_operator_registry.get('__bool__')(self)
- return out
-
- def __pos__(self):
- return self
-
- def __iadd__(self, other):
- return self.__add__(other)
-
- def __radd__(self, other):
- out = tensor_operator_registry.get('__add__')(self, other)
- return out
-
- def __imul__(self, other):
- return self.__mul__(other)
-
- def __rmul__(self, other):
- out = tensor_operator_registry.get('__mul__')(self, other)
- return out
-
- def __truediv__(self, other):
- out = tensor_operator_registry.get('__truediv__')(self, other)
- return out
-
- def __rtruediv__(self, other):
- out = tensor_operator_registry.get('__truediv__')(other, self)
- return out
-
- def __sub__(self, other):
- out = tensor_operator_registry.get('__sub__')(self, other)
- return out
-
- def __isub__(self, other):
- return self.__sub__(other)
-
- def __rsub__(self, other):
- out = tensor_operator_registry.get('__sub__')(other, self)
- return out
-
- def __lt__(self, other):
- out = tensor_operator_registry.get('__lt__')(self, other)
- return out
-
- def __le__(self, other):
- out = tensor_operator_registry.get('__le__')(self, other)
- return out
-
- def __getitem__(self, index):
- out = tensor_operator_registry.get('__getitem__')(self, index)
- return out
-
- def __setitem__(self, index, value):
- out = tensor_operator_registry.get('__setitem__')(self, index, value)
- self.assign_value(out)
- return self
-
- def __gt__(self, other):
- out = tensor_operator_registry.get('__gt__')(self, other)
- return out
-
- def __ge__(self, other):
- out = tensor_operator_registry.get('__ge__')(self, other)
- return out
-
- def __len__(self):
- out = tensor_operator_registry.get('shape')(self)
- if not out:
- return 1
- return out[0]
-
- def __mod__(self, other):
- return tensor_operator_registry.get('__mod__')(self, other)
-
- def __imod__(self, other):
- return self.__mod__(other)
-
- def __pow__(self, other):
- return tensor_operator_registry.get('__pow__')(self, other)
-
- def __floordiv__(self, other):
- return tensor_operator_registry.get('__floordiv__')(self, other)
-
- def __ifloordiv__(self, other):
- return self.__floordiv__(other)
-
- def __str__(self):
- if self.dtype == mstype.type_none:
- return "Unknown Tensor type!"
- return str(self.asnumpy())
-
- @property
- def virtual_flag(self):
- """Mark tensor is virtual."""
- return self._virtual_flag
-
- @virtual_flag.setter
- def virtual_flag(self, value):
- """The setter of virtual_flag."""
- if not isinstance(value, bool):
- raise TypeError("virtual_flag must be bool.")
- self._virtual_flag = value
-
-
- class IndexedSlices:
- """
- A sparse representation of a set of tensor slices at given indices.
-
- An IndexedSlices is typically used to represent a subset of a larger
- tensor dense of shape [L0, D1, .. , DN] where L0 >> D0.
-
- The values in indices are the indices in the first dimension of the slices
- that have been extracted from the larger tensor.
-
- The dense tensor dense represented by an IndexedSlices slices has
- `dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]`.
-
- IndexedSlices can only be used in `Cell`'s contruct method.
-
- Args:
- indices (Tensor): A 1-D integer Tensor of shape [D0].
- values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn].
- dense_shape (tuple): A integer tuple containing the shape
- of the corresponding dense tensor.
-
- Returns:
- IndexedSlices, composed of `indices`, `values`, `dense_shape`.
-
- Examples:
- >>> # Create a IndexedSlices.
- >>> indices = Tensor([1, 2])
- >>> values = Tensor([[0, 0], [1, 2]], dtype=ms.float32)
- >>> dense_shape = (3, 2)
- >>> indexed_slices = IndexedSlices(indices, values, dense_shape)
- >>>
- >>> # Get atrr.
- >>> indices = indexed_slices.indices()
- >>> values = indexed_slices.values()
- >>> dense_shape = indexed_slices.dense_shape()
- """
- def __init__(self, indices, values, dense_shape):
- raise NotImplementedError
-
-
- class SparseTensor:
- """
- A sparse representation of a set of nonzero elememts from a tensor at given indices.
-
- SparseTensor can only be used in `Cell`'s contruct method.
-
- For a tensor dense, its SparseTensor(indices, values, dense_shape) has
- `dense[indices[i]] = values[i]`.
-
- Args:
- indices (Tensor): A 2-D integer Tensor of shape `[N, ndims]`,
- where N and ndims are the number of values and number of dimensions in
- the SparseTensor, respectively.
- values (Tensor): A 1-D tensor of any type and shape `[N]`, which
- supplies the values for each element in indices.
- dense_shape (tuple): A integer tuple of size `ndims`,
- which specifies the dense_shape of the sparse tensor.
-
- Returns:
- SparseTensor, composed of `indices`, `values`, `dense_shape`.
-
- Examples:
- >>> # Create a SparseTensor.
- >>> indices = Tensor([[0, 1], [1, 2]])
- >>> values = Tensor([1, 2], dtype=ms.float32)
- >>> dense_shape = (3, 4)
- >>> sparse_tensor = SparseTensor(indices, values, dense_shape)
- >>>
- >>> # Get atrr.
- >>> indices = sparse_tensor.indices()
- >>> values = sparse_tensor.values()
- >>> dense_shape = sparse_tensor.dense_shape()
- """
- def __init__(self, indices, values, dense_shape):
- raise NotImplementedError
|