|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "pre_activate/common/helper.h"
- #include <string>
- #include <unordered_set>
- #include <algorithm>
- #include "utils/utils.h"
- #include "utils/base_ref.h"
- #include "session/anf_runtime_algorithm.h"
- #include "operator/ops.h"
- #include "common/utils.h"
- #include "device/kernel_info.h"
- #include "utils/context/ms_context.h"
-
- namespace mindspore {
- namespace opt {
- constexpr size_t kType32Len = 4;
- std::vector<int> Convert2Int(const std::vector<size_t> &v) {
- std::vector<int> result;
- (void)std::transform(v.begin(), v.end(), std::back_inserter(result), SizeToInt);
- return result;
- }
-
- bool UnVisited(const BaseRef &n) {
- if (utils::isa<AnfNodePtr>(n)) {
- AnfNodePtr in = utils::cast<AnfNodePtr>(n);
- MS_EXCEPTION_IF_NULL(in);
- if (IsValueNode<Primitive>(in)) {
- auto value_node = in->cast<ValueNodePtr>();
- MS_EXCEPTION_IF_NULL(value_node);
- auto value = value_node->value();
- MS_EXCEPTION_IF_NULL(value);
- auto prim_py = value->cast<PrimitivePtr>();
- MS_EXCEPTION_IF_NULL(prim_py);
- return !prim_py->HasAttr(kAttrVisited);
- } else {
- return false;
- }
- }
- return false;
- }
-
- bool CheckIfCNodeAndInputSize(const AnfNodePtr &node, int input_size, CNodePtr *cnode) {
- MS_EXCEPTION_IF_NULL(node);
- if (!node->isa<CNode>()) {
- MS_LOG(ERROR) << "The node is expected to be a cnode";
- return false;
- }
- *cnode = node->cast<CNodePtr>();
- if (*cnode == nullptr) {
- return false;
- }
- if ((*cnode)->inputs().size() < IntToSize(input_size)) {
- auto op_name = AnfAlgo::GetCNodeName(*cnode);
- MS_LOG(ERROR) << "op[" + op_name + "] has less than " << input_size << " inputs.";
- return false;
- }
- return true;
- }
-
- CNodePtr CheckAnfNodeIfCNodeAndInputSize(const AnfNodePtr &node, int input_size) {
- MS_EXCEPTION_IF_NULL(node);
- if (!node->isa<CNode>()) {
- MS_LOG(EXCEPTION) << "The node is expected to be a cnode";
- }
- auto cnode = node->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(cnode);
- if (cnode->inputs().size() != IntToSize(input_size)) {
- auto op_name = AnfAlgo::GetCNodeName(cnode);
- MS_LOG(EXCEPTION) << "op[" + op_name + "] has less than " << input_size << " inputs.";
- }
- return cnode;
- }
-
- void CheckCNodeInputSize(const CNodePtr &cnode, size_t input_size) {
- MS_EXCEPTION_IF_NULL(cnode);
- if (cnode->inputs().size() != input_size) {
- MS_LOG(EXCEPTION) << "The input size of node " + cnode->DebugString() + " is not equal to " << input_size;
- }
- }
-
- bool HasSymmetricalKernelInfo(const AnfNodePtr &node_x, const AnfNodePtr &node_y) {
- MS_EXCEPTION_IF_NULL(node_x);
- MS_EXCEPTION_IF_NULL(node_y);
- return (AnfAlgo::GetInputDeviceDataType(node_x, 0) == AnfAlgo::GetOutputDeviceDataType(node_y, 0) &&
- AnfAlgo::GetOutputDeviceDataType(node_x, 0) == AnfAlgo::GetInputDeviceDataType(node_y, 0));
- }
-
- const AnfNodePtr EliminateDependTransop(const FuncGraphPtr &func_graph, const AnfNodePtr &node) {
- MS_EXCEPTION_IF_NULL(func_graph);
-
- auto transop_cnode = CheckAnfNodeIfCNodeAndInputSize(node, kTransOpInputNum);
- auto depend_cnode = CheckAnfNodeIfCNodeAndInputSize(transop_cnode->input(kCastInputNum - 1), kDependInputNum);
- auto prev_transop_cnode = CheckAnfNodeIfCNodeAndInputSize(depend_cnode->input(1), kTransOpInputNum);
- MS_EXCEPTION_IF_NULL(depend_cnode->input(kDependInputNum - 1));
- MS_EXCEPTION_IF_NULL(prev_transop_cnode->input(kTransOpInputNum - 1));
- auto transed_node = prev_transop_cnode->input(kTransOpInputNum - 1);
- MS_EXCEPTION_IF_NULL(transed_node);
-
- std::vector<AnfNodePtr> replace_depend_inputs{NewValueNode(prim::kPrimDepend), transed_node,
- depend_cnode->input(kDependInputNum - 1)};
- AnfNodePtr replace_depend = func_graph->NewCNode(replace_depend_inputs);
- MS_EXCEPTION_IF_NULL(replace_depend);
- auto transed_abstract = transed_node->abstract();
- replace_depend->set_abstract(transed_abstract);
- return replace_depend;
- }
-
- bool Visited(const BaseRef &n) {
- if (utils::isa<AnfNodePtr>(n)) {
- AnfNodePtr in = utils::cast<AnfNodePtr>(n);
- MS_EXCEPTION_IF_NULL(in);
- if (IsValueNode<Primitive>(in)) {
- auto value_node = in->cast<ValueNodePtr>();
- MS_EXCEPTION_IF_NULL(value_node);
- auto value = value_node->value();
- MS_EXCEPTION_IF_NULL(value);
- auto prim_py = value->cast<PrimitivePtr>();
- MS_EXCEPTION_IF_NULL(prim_py);
- return prim_py->HasAttr(kAttrVisited);
- } else {
- return false;
- }
- }
- return false;
- }
-
- void CreateOutputsOfConvBn1(const FuncGraphPtr &func_graph, const CNodePtr &conv_cnode, const CNodePtr &bn_cnode,
- std::vector<AnfNodePtr> *conv_bn1_outputs) {
- auto prim = std::make_shared<Primitive>(kConvBN1OpName);
- std::vector<AnfNodePtr> conv_bn1_inputs = {NewValueNode(prim)};
- MS_EXCEPTION_IF_NULL(conv_cnode);
- // All the inputs of conv_bn1 are from the inputs of conv
- for (size_t i = 1; i < conv_cnode->inputs().size(); i++) {
- conv_bn1_inputs.push_back(conv_cnode->input(i));
- }
- MS_EXCEPTION_IF_NULL(func_graph);
- CNodePtr conv_bn1_cnode = func_graph->NewCNode(conv_bn1_inputs);
- MS_EXCEPTION_IF_NULL(conv_bn1_cnode);
- auto kernel_info = std::make_shared<device::KernelInfo>();
- conv_bn1_cnode->set_kernel_info(kernel_info);
- // Set attr for conv_bn1
- AnfAlgo::CopyNodeAttrs(conv_cnode, conv_bn1_cnode);
- // Set abstract of conv_bn1
- MS_EXCEPTION_IF_NULL(bn_cnode);
- auto bn_abstract_tuple = dyn_cast<abstract::AbstractTuple>(bn_cnode->abstract());
- MS_EXCEPTION_IF_NULL(bn_abstract_tuple);
- AbstractBasePtrList conv_bn1_abstract_list;
- conv_bn1_abstract_list.push_back(conv_cnode->abstract());
- auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(
- kFloat32, Convert2Int(AnfAlgo::GetPrevNodeOutputInferShape(bn_cnode, kVariance - 1)));
- conv_bn1_abstract_list.push_back(abstract_tensor);
- conv_bn1_abstract_list.push_back(bn_abstract_tuple->elements()[kSaveMean]);
- auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(conv_bn1_abstract_list);
- conv_bn1_cnode->set_abstract(abstract_tuple);
-
- CreateMultipleOutputsOfAnfNode(func_graph, conv_bn1_cnode, kConvBn1OutputNum, conv_bn1_outputs);
- }
-
- void CreateOutputsOfFusedBn2(const FuncGraphPtr &graph, const std::vector<AnfNodePtr> &fused_bn1_outputs,
- const CNodePtr &bn_node, std::vector<AnfNodePtr> *fused_bn2_outputs) {
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(bn_node);
- MS_EXCEPTION_IF_NULL(fused_bn2_outputs);
- if (bn_node->inputs().size() != kBnInputNum) {
- MS_LOG(EXCEPTION) << "BN node has wrong input size";
- }
- if (fused_bn1_outputs.size() != kBN1OutputNum) {
- MS_LOG(EXCEPTION) << "BN1 outputs has wrong input size";
- }
-
- // the inputs of fused_bn2 are from the outputs of fused_bn1 and the inputs of bn
- std::vector<AnfNodePtr> fused_bn2_inputs = {NewValueNode(std::make_shared<Primitive>(kFusedBN2OpName))};
- fused_bn2_inputs.push_back(fused_bn1_outputs[0]);
- fused_bn2_inputs.push_back(fused_bn1_outputs[1]);
- fused_bn2_inputs.push_back(bn_node->input(4));
- fused_bn2_inputs.push_back(bn_node->input(5));
- auto fused_bn2 = graph->NewCNode(fused_bn2_inputs);
- MS_EXCEPTION_IF_NULL(fused_bn2);
- auto kernel_info = std::make_shared<device::KernelInfo>();
- fused_bn2->set_kernel_info(kernel_info);
- auto types = {AnfAlgo::GetOutputInferDataType(bn_node, 4), AnfAlgo::GetOutputInferDataType(bn_node, 1),
- AnfAlgo::GetOutputInferDataType(bn_node, 2)};
- auto shapes = {AnfAlgo::GetOutputInferShape(bn_node, 4), AnfAlgo::GetOutputInferShape(bn_node, 1),
- AnfAlgo::GetOutputInferShape(bn_node, 2)};
- AnfAlgo::SetOutputInferTypeAndShape(types, shapes, fused_bn2.get());
- fused_bn2->set_scope(bn_node->scope());
- AnfAlgo::CopyNodeAttr(kAttrMomentum, bn_node, fused_bn2);
-
- CreateMultipleOutputsOfAnfNode(graph, fused_bn2, kBN2OutputNum, fused_bn2_outputs);
- }
-
- void CreateOutputsOfFusedBn3(const FuncGraphPtr &graph, const AnfNodePtr &data_input,
- const std::vector<AnfNodePtr> &fused_bn1_outputs,
- const std::vector<AnfNodePtr> &fused_bn2_outputs, const CNodePtr &bn_node,
- std::vector<AnfNodePtr> *fused_bn3_outputs) {
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(data_input);
- MS_EXCEPTION_IF_NULL(bn_node);
- MS_EXCEPTION_IF_NULL(fused_bn3_outputs);
- if (bn_node->inputs().size() != kBnInputNum) {
- MS_LOG(EXCEPTION) << "BN node has wrong input size";
- }
-
- if (fused_bn1_outputs.size() != kBN1OutputNum) {
- MS_LOG(EXCEPTION) << "BN1 outputs has wrong input size";
- }
-
- if (fused_bn2_outputs.size() != kBN2OutputNum) {
- MS_LOG(EXCEPTION) << "BN2 outputs has wrong input size";
- }
-
- // the inputs of fused_bn3 are from the outputs of fused_bn1 and the inputs of bn
- std::vector<AnfNodePtr> fused_bn3_inputs = {NewValueNode(std::make_shared<Primitive>(kFusedBN3OpName))};
- fused_bn3_inputs.push_back(data_input);
- fused_bn3_inputs.push_back(fused_bn1_outputs[0]);
- fused_bn3_inputs.push_back(fused_bn2_outputs[0]);
- fused_bn3_inputs.push_back(bn_node->input(2));
- fused_bn3_inputs.push_back(bn_node->input(3));
- auto fused_bn3 = graph->NewCNode(fused_bn3_inputs);
- MS_EXCEPTION_IF_NULL(fused_bn3);
- auto kernel_info = std::make_shared<device::KernelInfo>();
- fused_bn3->set_kernel_info(kernel_info);
- auto types = {AnfAlgo::GetOutputInferDataType(bn_node, 0)};
- auto shapes = {AnfAlgo::GetOutputInferShape(bn_node, 0)};
- AnfAlgo::SetOutputInferTypeAndShape(types, shapes, fused_bn3.get());
-
- fused_bn3->set_scope(bn_node->scope());
- AnfAlgo::CopyNodeAttr(kAttrEpsilon, kAttrEps, bn_node, fused_bn3);
-
- (*fused_bn3_outputs).push_back(fused_bn3);
- }
-
- void CreateMultipleOutputsOfAnfNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_num,
- std::vector<AnfNodePtr> *outputs) {
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_EXCEPTION_IF_NULL(node);
- MS_EXCEPTION_IF_NULL(outputs);
- for (size_t i = 0; i < output_num; i++) {
- auto idx = NewValueNode(SizeToInt(i));
- MS_EXCEPTION_IF_NULL(idx);
- int temp = SizeToInt(i);
- auto imm = std::make_shared<Int32Imm>(temp);
- auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm);
- idx->set_abstract(abstract_scalar);
- auto tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx});
- MS_EXCEPTION_IF_NULL(tuple_getitem);
- AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(node, i)},
- {AnfAlgo::GetOutputInferShape(node, i)}, tuple_getitem.get());
- (*outputs).push_back(tuple_getitem);
- }
- }
-
- template <typename T>
- tensor::TensorPtr CreateTensorWithValueTuple(const ValueTuplePtr &value_tuple_ptr, const TypePtr &type_ptr,
- size_t data_length) {
- MS_EXCEPTION_IF_NULL(value_tuple_ptr);
- MS_EXCEPTION_IF_NULL(type_ptr);
- std::vector<T> values;
- for (const auto &v : value_tuple_ptr->value()) {
- MS_EXCEPTION_IF_NULL(v);
- if (v->isa<Scalar>()) {
- ScalarPtr scalar = v->cast<ScalarPtr>();
- values.push_back(GetValue<T>(scalar));
- } else {
- MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar";
- return nullptr;
- }
- }
- std::vector<int> tensor_shape = {SizeToInt(values.size())};
- tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(type_ptr->type_id(), tensor_shape);
- MS_EXCEPTION_IF_NULL(tensor);
- tensor::DeviceInfo device_info{kOpFormat_DEFAULT, type_ptr};
- tensor->set_device_info(device_info);
- auto data_ptr = tensor->data_c(true);
- MS_EXCEPTION_IF_NULL(data_ptr);
- auto elem_num = values.size() * data_length;
- auto ret_code = memcpy_s(data_ptr, static_cast<size_t>(tensor->data().nbytes()), values.data(), elem_num);
- if (ret_code != 0) {
- MS_LOG(EXCEPTION) << "Failed to copy data into Tensor.";
- }
- return tensor;
- }
-
- tensor::TensorPtr CreateTupleTensor(const ValueTuplePtr &value_tuple) {
- MS_EXCEPTION_IF_NULL(value_tuple);
- tensor::TensorPtr tensor = nullptr;
- ValuePtr v = *(value_tuple->value().begin());
- MS_EXCEPTION_IF_NULL(v);
- // Currently we only deal with the scalar tuple
- if (!v->isa<Scalar>()) {
- MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar";
- return nullptr;
- }
- ScalarPtr scalar = v->cast<ScalarPtr>();
- MS_EXCEPTION_IF_NULL(scalar);
- if (scalar->isa<IntergerImm>()) {
- tensor = CreateTensorWithValueTuple<int>(value_tuple, kInt32, kType32Len);
- } else if (scalar->isa<FloatImm>()) {
- tensor = CreateTensorWithValueTuple<float>(value_tuple, kFloat32, kType32Len);
- } else {
- auto type = scalar->type();
- auto type_str = (type == nullptr) ? "nullptr" : type->ToString();
- MS_LOG(ERROR) << "Invalid scalar type: " << type_str;
- return nullptr;
- }
- return tensor;
- }
-
- bool IsNopNode(const AnfNodePtr &node) {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- if (context_ptr->device_target() != kAscendDevice) {
- return false;
- }
- static std::unordered_set<std::string> nop_nodes = {prim::kPrimReshape->name(), kExpandDimsOpName,
- prim::kPrimSqueeze->name(), prim::kPrimFlatten->name()};
- if (node == nullptr || !node->isa<CNode>()) {
- return false;
- }
- CNodePtr cnode = node->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(cnode);
- if (nop_nodes.find(AnfAlgo::GetCNodeName(cnode)) == nop_nodes.end()) {
- return false;
- }
- return true;
- }
-
- void HideNopNode(session::KernelGraph *const graph) {
- MS_EXCEPTION_IF_NULL(graph);
- auto execution_order = graph->execution_order();
- MS_LOG(INFO) << "nop node info (Before Remove) size: " << execution_order.size();
- std::vector<CNodePtr> new_nodes;
- for (auto &cnode : execution_order) {
- MS_EXCEPTION_IF_NULL(cnode);
- if (!IsNopNode(cnode)) {
- new_nodes.push_back(cnode);
- }
- }
- graph->set_execution_order(new_nodes);
- MS_LOG(INFO) << "nop node info (After Remove) size: " << graph->execution_order().size();
- }
-
- void RemoveNopNode(session::KernelGraph *const graph) {
- MS_EXCEPTION_IF_NULL(graph);
- bool changed = true;
- while (changed) {
- changed = false;
- std::vector<CNodePtr> new_nodes;
- for (auto &cnode : graph->execution_order()) {
- MS_EXCEPTION_IF_NULL(cnode);
- // ignore nop node itself
- if (IsNopNode(cnode)) {
- continue;
- }
- // Replace the input which is nop node
- std::vector<AnfNodePtr> new_inputs;
- new_inputs.push_back(cnode->input(0));
- bool need_update = false;
- for (size_t i = 1; i < cnode->inputs().size(); ++i) {
- auto input = cnode->input(i);
- MS_EXCEPTION_IF_NULL(input);
- auto cinput = input->cast<CNodePtr>();
- if (cinput == nullptr || !IsNopNode(cinput)) {
- new_inputs.push_back(input);
- continue;
- }
- if (cinput->inputs().size() == 2) {
- new_inputs.push_back(cinput->input(1));
- need_update = true;
- changed = true;
- } else {
- new_inputs.push_back(input);
- }
- }
- if (need_update) {
- cnode->set_inputs(new_inputs);
- }
- // push into new execution list
- new_nodes.push_back(cnode);
- }
- graph->set_execution_order(new_nodes);
- }
- }
-
- bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node) {
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(node);
- auto manager = graph->manager();
- MS_EXCEPTION_IF_NULL(manager);
- if (manager->node_users().find(node) == manager->node_users().end()) {
- MS_LOG(EXCEPTION) << "node has no output in manager";
- }
- return manager->node_users()[node].size() > 1;
- }
-
- AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx) {
- auto idx = NewValueNode(SizeToInt(output_idx));
- MS_EXCEPTION_IF_NULL(idx);
- auto imm = std::make_shared<Int32Imm>(SizeToInt(output_idx));
- auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm);
- idx->set_abstract(abstract_scalar);
- AnfNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx});
- MS_EXCEPTION_IF_NULL(tuple_getitem);
- tuple_getitem->set_scope(node->scope());
- std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx);
- TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx);
- AnfAlgo::SetOutputInferTypeAndShape({origin_type}, {origin_shape}, tuple_getitem.get());
- return tuple_getitem;
- }
-
- void ConstInputToAttr(const CNodePtr &cnode, const std::unordered_set<size_t> &input_attrs) {
- MS_EXCEPTION_IF_NULL(cnode);
- std::vector<AnfNodePtr> new_inputs;
- std::vector<std::string> new_input_names;
- auto primitive = AnfAlgo::GetCNodePrimitive(cnode);
- MS_EXCEPTION_IF_NULL(primitive);
- auto input_names = primitive->GetAttr(kAttrInputNames);
- if (input_names == nullptr) {
- MS_LOG(DEBUG) << "input_names are nullptr in cnode[" + cnode->DebugString() + "]";
- return;
- }
- auto input_names_vec = GetValue<std::vector<std::string>>(input_names);
- auto inputs = cnode->inputs();
- new_inputs.push_back(inputs[0]);
- bool need_update = false;
- for (size_t i = 0; i < inputs.size() - 1; ++i) {
- auto input_node = inputs[i + 1];
- MS_EXCEPTION_IF_NULL(input_node);
- if (input_attrs.find(i) != input_attrs.end() && input_node->isa<ValueNode>()) {
- auto value_node = input_node->cast<ValueNodePtr>();
- MS_EXCEPTION_IF_NULL(value_node);
- MS_LOG(DEBUG) << "start erase input[" << i << "] of cnode[" + cnode->DebugString() + "]";
- if (i >= input_names_vec.size()) {
- MS_LOG(EXCEPTION) << "index " << i << " is larger than input names size [" << input_names_vec.size() << "]";
- }
- primitive->set_attr(input_names_vec[i], value_node->value());
- need_update = true;
- } else {
- new_inputs.push_back(input_node);
- if (i < input_names_vec.size()) {
- new_input_names.push_back(input_names_vec[i]);
- }
- }
- }
- if (need_update) {
- // Update cnode's inputs
- cnode->set_inputs(new_inputs);
- // Update cnode's input_names attr
- primitive->set_attr(kAttrInputNames, MakeValue(new_input_names));
- }
- }
- } // namespace opt
- } // namespace mindspore
|