|
- /**
- * Copyright 2019-2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "backend/session/ascend_session.h"
- #include <algorithm>
- #include <map>
- #include <tuple>
- #include <set>
- #include <string>
- #include <list>
-
- #include "base/core_ops.h"
- #include "base/base_ref_utils.h"
- #include "ir/tensor.h"
- #include "ir/anf.h"
- #include "common/trans.h"
- #include "runtime/device/kernel_runtime.h"
- #include "runtime/device/ascend/kernel_select_ascend.h"
- #include "runtime/device/ascend/kernel_build_ascend.h"
- #include "runtime/device/ascend/ascend_kernel_runtime.h"
- #include "runtime/device/ascend/profiling/profiling_manager.h"
- #include "backend/optimizer/ascend/ascend_backend_optimization.h"
- #include "backend/optimizer/common/common_backend_optimization.h"
- #include "backend/optimizer/ascend/mindir/space_batch_nd_attr_update.h"
- #include "backend/optimizer/ascend/mindir/dropout_unify_mindir.h"
- #include "backend/optimizer/ascend/mindir/maxpool_to_maxpool_with_argmax.h"
- #include "backend/optimizer/ascend/mindir/maxpool_with_argmax_unify_mindir.h"
- #include "backend/optimizer/ascend/mindir/conv2d_unify_mindir.h"
- #include "backend/optimizer/ascend/mindir/sparse_softmax_cross_entropy_with_logits_unify_mindir.h"
- #include "backend/optimizer/ascend/mindir/slice_grad_unify_mindir.h"
- #include "runtime/device/kernel_adjust.h"
- #include "runtime/device/ascend/ascend_stream_assign.h"
- #include "backend/session/anf_runtime_algorithm.h"
- #include "utils/ms_utils.h"
- #include "backend/optimizer/common/helper.h"
- #include "runtime/device/kernel_runtime_manager.h"
- #include "utils/config_manager.h"
- #include "debug/data_dump/dump_json_parser.h"
- #include "debug/tensor_load.h"
- #include "debug/anf_ir_utils.h"
- #include "backend/optimizer/graph_kernel/reorder_ops.h"
- #include "backend/optimizer/graph_kernel/basic_ops_fusion.h"
- #include "backend/optimizer/graph_kernel/eliminate_redundant_output.h"
- #include "backend/optimizer/graph_kernel/tensor_promotion.h"
- #include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
- #include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
- #include "backend/optimizer/graph_kernel/graph_kernel_cse.h"
- #include "backend/optimizer/graph_kernel/value_graph_binder.h"
- #include "backend/optimizer/graph_kernel/add_atomic_clean.h"
- #include "backend/optimizer/pass/getitem_tuple.h"
- #include "debug/data_dump/e2e_dump_util.h"
- #include "debug/anf_ir_dump.h"
- #include "debug/dump_proto.h"
- #include "toolchain/adx_datadump_server.h"
- #ifdef ENABLE_DUMP_IR
- #include "debug/rdr/running_data_recorder.h"
- #endif
- #if ENABLE_CPU && ENABLE_D
- #include "ps/util.h"
- #include "ps/ps_cache/ps_cache_manager.h"
- #endif
- #include "profiler/device/common/memory_profiling.h"
-
- using mindspore::device::ascend::ProfilingManager;
- using mindspore::profiler::MemoryProfiling;
-
- static constexpr uint32_t kLabelSwitchLabelId = 2;
- namespace mindspore {
- namespace session {
- const size_t kInvalidIndex = SIZE_MAX;
- constexpr size_t kReturnDataIndex = 1;
- constexpr char SR_TAG[] = "sr_tag";
- constexpr char BACKWARD[] = "backward";
- namespace {
- void DumpGraphExeOrder(const std::vector<CNodePtr> &execution_order, const std::string &tag = "") {
- MS_LOG(INFO) << "Dump execution_order size " << execution_order.size();
- MS_LOG(INFO) << "[index][stream_label][graph_id][node string]";
- int i = 0;
- for (auto &cnode : execution_order) {
- MS_EXCEPTION_IF_NULL(cnode);
- MS_LOG(INFO) << "[ " << i << "]"
- << "[" << AnfAlgo::GetStreamDistinctionLabel(cnode.get()) << "]"
- << "[" << AnfAlgo::GetGraphId(cnode.get()) << "]"
- << "[" << cnode->DebugString() << "]";
- i++;
- }
-
- std::stringstream buf;
- buf << "================== execution order ==================\n";
- if (!tag.empty()) {
- buf << tag << "\n";
- }
- buf << "execution_order size: " << execution_order.size() << "\n";
- i = 0;
- for (auto &cnode : execution_order) {
- MS_EXCEPTION_IF_NULL(cnode);
- buf << i << ":\n";
- buf << "\t" << cnode->DebugString() << "\n";
- buf << "\t" << AnfAlgo::GetStreamDistinctionLabel(cnode.get()) << "\n";
- buf << "\t" << AnfAlgo::GetGraphId(cnode.get()) << "\n";
- i++;
- }
- buf << "================== execution order ==================\n";
- }
-
- void SetStreamDistinctionLabel(const KernelGraphPtr &graph, uint32_t label, bool is_override) {
- MS_EXCEPTION_IF_NULL(graph);
- if (is_override || graph->stream_distinction_label() == kInvalidDistincLabel) {
- graph->set_stream_distinction_label(label);
- }
- }
-
- std::vector<CNodePtr> GetCNodes(const std::vector<AnfNodePtr> &anf_nodes) {
- std::vector<CNodePtr> cnodes = {};
- for (const auto &anf : anf_nodes) {
- MS_EXCEPTION_IF_NULL(anf);
- if (anf->isa<CNode>()) {
- cnodes.push_back(anf->cast<CNodePtr>());
- }
- }
- return cnodes;
- }
- void InsertMakeTupleForOutput(NotNull<KernelGraphPtr> root_graph) {
- auto return_node = root_graph->get_return();
- MS_EXCEPTION_IF_NULL(return_node);
- if (return_node->size() <= kReturnDataIndex) {
- return;
- }
- auto make_tuple = root_graph->NewCNode(
- {NewValueNode(std::make_shared<Primitive>(prim::kPrimMakeTuple->name())), root_graph->output()});
- root_graph->set_output(make_tuple);
- }
-
- TensorPtr GetCNodeOutputStubTensor(const KernelWithIndex &kernel_with_index,
- const std::map<KernelWithIndex, OutputTensorInfo> &node_output_info,
- bool *output_is_weight) {
- MS_EXCEPTION_IF_NULL(output_is_weight);
- const auto &iter = node_output_info.find(kernel_with_index);
- if (iter == node_output_info.end()) {
- MS_LOG(EXCEPTION) << "Can not find output stub tensor of cnode " << kernel_with_index.first->DebugString();
- }
- *output_is_weight = iter->second.is_weight;
- return iter->second.output_stub_tensor;
- }
-
- void GenOpOutputStubTensor(const KernelGraphPtr &single_op_graph, const CNodePtr &kernel,
- std::map<KernelWithIndex, OutputTensorInfo> *op_output_info) {
- MS_EXCEPTION_IF_NULL(single_op_graph);
- MS_EXCEPTION_IF_NULL(kernel);
- MS_EXCEPTION_IF_NULL(op_output_info);
- OutputTensorInfo output_tensor_info;
- size_t out_idx = 0;
- for (const auto &output : single_op_graph->outputs()) {
- const auto &output_kernel_with_index = AnfAlgo::VisitKernel(output, 0);
- const auto &output_node = output_kernel_with_index.first;
- const auto &output_index = output_kernel_with_index.second;
- auto out_abstract = output_node->abstract();
- MS_EXCEPTION_IF_NULL(out_abstract);
- if (out_abstract->isa<abstract::AbstractTuple>()) {
- out_abstract = out_abstract->cast<abstract::AbstractTuplePtr>()->elements()[output_index];
- MS_EXCEPTION_IF_NULL(out_abstract);
- }
- abstract::AbstractTensorPtr tensor_abstract = out_abstract->cast<abstract::AbstractTensorPtr>();
- MS_EXCEPTION_IF_NULL(tensor_abstract);
- const auto &infer_type = AnfAlgo::GetOutputInferDataType(output_node, output_index);
- tensor::TensorPtr stub_output_tensor =
- std::make_shared<tensor::Tensor>(infer_type, tensor_abstract->shape()->shape(), nullptr);
- const auto &output_type = AnfAlgo::GetOutputDeviceDataType(output_node, output_index);
- const auto &output_shape = AnfAlgo::GetOutputDeviceShape(output_node, output_index);
- const auto &output_format = AnfAlgo::GetOutputFormat(output_node, output_index);
- tensor::DeviceInfo device_info;
- device_info.format_ = output_format;
- device_info.data_type_ = TypeIdToType(output_type);
- stub_output_tensor->set_device_info(device_info);
- device::DeviceAddressPtr device_address =
- std::make_shared<device::ascend::AscendDeviceAddress>(nullptr, 0, output_format, output_type);
- stub_output_tensor->set_device_address(device_address);
- KernelWithIndex kernel_with_index = std::make_pair(kernel, out_idx++);
- output_tensor_info.output_stub_tensor = stub_output_tensor;
- output_tensor_info.is_weight = !dynamic_cast<device::KernelInfo *>(output_node->kernel_info())->is_feature_map();
- (*op_output_info)[kernel_with_index] = output_tensor_info;
- }
- }
- } // namespace
-
- void AscendSession::Init(uint32_t device_id) { InitExecutor(kAscendDevice, device_id); }
-
- void AscendSession::UnifyMindIR(const KernelGraphPtr &graph) {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- std::string file_name = "hwopt_d_before_unify_mindir_graph_" + std::to_string(graph->graph_id()) + ".ir";
- DumpIR(file_name, graph);
- DumpIRProto(graph, "before_unify_mindir_hwopt_" + std::to_string(graph->graph_id()));
- }
- auto optimizer = std::make_shared<opt::GraphOptimizer>();
- auto unify_mindir_pm = std::make_shared<opt::PassManager>("unify_mindir_pm");
- unify_mindir_pm->AddPass(std::make_shared<opt::SpaceToBatchNDAttrUpdate>());
- unify_mindir_pm->AddPass(std::make_shared<opt::BatchToSpaceNDAttrUpdate>());
- unify_mindir_pm->AddPass(std::make_shared<opt::MaxPool2MaxPoolWithArgmax>());
- unify_mindir_pm->AddPass(std::make_shared<opt::MaxPoolWithArgmaxUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::MaxPoolGradWithArgmaxUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DBackpropInputUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DBackpropFilterUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::SliceGradUnifyMindIR>());
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (ms_context->get_param<int>(MS_CTX_EXECUTION_MODE) == kGraphMode) {
- unify_mindir_pm->AddPass(std::make_shared<opt::DropoutGradUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::DropoutUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::GradSparseSoftmaxCrossEntropyWithLogitsUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::GradSparseSoftmaxCrossEntropyWithLogitsUnifyMindIRV2>());
- unify_mindir_pm->AddPass(std::make_shared<opt::SparseSoftmaxCrossEntropyWithLogitsUnifyMindIR>());
- } else {
- unify_mindir_pm->AddPass(std::make_shared<opt::DropoutUnifyMindIRPynative>());
- unify_mindir_pm->AddPass(std::make_shared<opt::DropoutGradUnifyMindIRPynative>());
- unify_mindir_pm->AddPass(std::make_shared<opt::PynativeSparseSoftmaxCrossEntropyWithLogitsUnifyMindIR>());
- unify_mindir_pm->AddPass(std::make_shared<opt::PynativeGradSparseSoftmaxCrossEntropyWithLogitsUnifyMindIR>());
- }
-
- optimizer->AddPassManager(unify_mindir_pm);
- (void)optimizer->Optimize(graph);
- graph->SetExecOrderByDefault();
- if (save_graphs) {
- std::string file_name = "hwopt_d_after_unify_mindir_graph_" + std::to_string(graph->graph_id()) + ".ir";
- DumpIR(file_name, graph);
- }
- }
-
- GraphId AscendSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
- MS_LOG(INFO) << "Start";
- // construct graph, if successfully, graph_sum_ + 1
- auto graph = ConstructKernelGraph(lst, outputs);
- auto graph_id = graph->graph_id();
- MS_LOG(INFO) << "Compile graph " << graph_id << " success";
- return graph_id;
- }
-
- bool IsBackward(const CNodePtr &cnode) {
- auto prim = GetValueNode<PrimitivePtr>(cnode->input(0));
- return prim->HasAttr(BACKWARD);
- }
-
- // compare the value of send/recv sr_tag
- bool comp(const CNodePtr &node1, const CNodePtr &node2) {
- auto prim1 = GetValueNode<PrimitivePtr>(node1->input(0));
- MS_EXCEPTION_IF_NULL(prim1);
- auto prim2 = GetValueNode<PrimitivePtr>(node1->input(0));
- MS_EXCEPTION_IF_NULL(prim2);
- auto sr_tag_value1 = prim1->GetAttr(SR_TAG);
- MS_EXCEPTION_IF_NULL(sr_tag_value1);
- auto sr_tag_value2 = prim2->GetAttr(SR_TAG);
- MS_EXCEPTION_IF_NULL(sr_tag_value2);
- auto sr_tag1 = GetValue<int64_t>(sr_tag_value1);
- auto sr_tag2 = GetValue<int64_t>(sr_tag_value2);
- return sr_tag1 < sr_tag2;
- }
-
- // Reorder the execution order of send
- void ReorderSend(std::vector<CNodePtr> *execution_order, std::vector<CNodePtr> op_v) {
- auto last_node = op_v.back();
- for (auto &node : op_v) {
- if (node == last_node) {
- continue;
- }
- auto node_iter = std::find(execution_order->begin(), execution_order->end(), node);
- (void)execution_order->erase(node_iter);
- }
- std::sort(op_v.begin(), op_v.end(), comp);
- auto last_node_iter = std::find(execution_order->begin(), execution_order->end(), last_node);
- auto node_iter = execution_order->erase(last_node_iter);
- // all send will insert the end of the last node
- execution_order->insert(node_iter, op_v.begin(), op_v.end());
- }
-
- // Reorder the execution order of receive
- void ReorderRecv(std::vector<CNodePtr> *execution_order, std::vector<CNodePtr> op_v) {
- auto begin_node = op_v.front();
- for (auto &node : op_v) {
- if (node == begin_node) {
- continue;
- }
- auto node_iter = std::find(execution_order->begin(), execution_order->end(), node);
- (void)execution_order->erase(node_iter);
- }
- std::sort(op_v.begin(), op_v.end(), comp);
- auto begin_node_iter = std::find(execution_order->begin(), execution_order->end(), begin_node);
- auto node_iter = execution_order->erase(begin_node_iter);
- // all receive will insert before the begin node
- execution_order->insert(node_iter, op_v.begin(), op_v.end());
- }
-
- void ReorderSendRecv(std::vector<CNodePtr> *execution_order) {
- std::vector<CNodePtr> forward_send, forward_recv, backward_send, backward_recv;
- for (auto &cnode : *execution_order) {
- if (IsPrimitiveCNode(cnode, prim::kPrimSend) && IsBackward(cnode)) {
- backward_send.push_back(cnode);
- continue;
- } else if (IsPrimitiveCNode(cnode, prim::kPrimSend)) {
- forward_send.push_back(cnode);
- continue;
- }
- if (IsPrimitiveCNode(cnode, prim::kPrimReceive) && IsBackward(cnode)) {
- backward_recv.push_back(cnode);
- } else if (IsPrimitiveCNode(cnode, prim::kPrimReceive)) {
- forward_recv.push_back(cnode);
- }
- }
- if (!forward_send.empty()) {
- ReorderSend(execution_order, forward_send);
- }
- if (!backward_send.empty()) {
- ReorderSend(execution_order, backward_send);
- }
- if (!forward_recv.empty()) {
- ReorderRecv(execution_order, forward_recv);
- }
- if (!backward_recv.empty()) {
- ReorderRecv(execution_order, backward_recv);
- }
- }
-
- GraphId AscendSession::CompileGraphImpl(NotNull<FuncGraphPtr> func_graph) {
- MS_LOG(INFO) << "Start";
- std::vector<KernelGraphPtr> all_graphs;
- auto root_graph = ConstructKernelGraph(func_graph, &all_graphs);
- // Update Graph Dynamic Shape Attr
- UpdateAllGraphDynamicShapeAttr(all_graphs);
- for (const auto &graph : all_graphs) {
- UnifyMindIR(graph);
- }
- BackendOptimization(all_graphs);
- // empty graph dont entry to backend
- if (root_graph->execution_order().empty()) {
- MS_LOG(INFO) << root_graph->ToString() << " is empty graph.";
- InsertMakeTupleForOutput(NOT_NULL(root_graph));
- root_graph->set_executable(false);
- InitRuntimeResource();
- return root_graph->graph_id();
- }
- // create parameter for multiple branch
- std::set<KernelGraphPtr> memo;
- CreateMultiBranchOutput(NOT_NULL(root_graph), NOT_NULL(&memo));
- memo.clear();
- // insert goto labels and label_sets
- LinkChildGraphs(NOT_NULL(root_graph));
- // replace labelgoto with labelswitch in subgraph called multiple times
- MultiCallGraphOptimize(NOT_NULL(root_graph));
- // resource initialize
- InitRuntimeResource();
- IrFusionPass(NOT_NULL(root_graph), NOT_NULL(&memo));
- memo.clear();
- SelectKernel(NOT_NULL(root_graph));
- memo.clear();
-
- HardwareOptimize(NOT_NULL(root_graph), NOT_NULL(&memo));
- memo.clear();
- // load graphs to debugger.
- if (debugger_ && debugger_->DebuggerBackendEnabled()) {
- LoadGraphsToDbg(NOT_NULL(root_graph), NOT_NULL(&memo));
- }
- memo.clear();
- UpdateRefOutputMap(NOT_NULL(root_graph), NOT_NULL(&memo));
- memo.clear();
- // add make_tuple to the output graph
- InsertMakeTupleForOutput(NOT_NULL(root_graph));
- // root root_graph valiate,include genearte execute order and so on
- RootGraphExecutorValidate(NOT_NULL(root_graph));
- // dump graph before remove nop nodes
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- DumpIRProto(root_graph, "before_removeNop_" + std::to_string(graph_sum_));
- }
-
- // adjust kernel
- AdjustKernel(root_graph);
- // reorder send/recv
- auto execution_order = root_graph->execution_order();
- ReorderSendRecv(&execution_order);
- root_graph->set_execution_order(execution_order);
- #if ENABLE_CPU && ENABLE_D
- InitPsWorker(root_graph);
- #endif
- // assign stream
- AssignStream(NOT_NULL(root_graph));
- // insert profiling point
- device::KernelAdjust::GetInstance().Profiling(NOT_NULL(root_graph.get()));
- // build kernel
- BuildKernel(root_graph);
- if (debugger_ && debugger_->partial_memory()) {
- debugger_->PreExecute(root_graph, graph_sum_);
- }
- SetSummaryNodes(root_graph.get());
- // Alloc memory for child graph's inputs
- AssignStaticMemory(NOT_NULL(root_graph), NOT_NULL(&memo));
- memo.clear();
- // Alloc memory for root graph's inputs and node's outputs, workspace
- MemoryAlloc(root_graph.get());
- // generate and load task into device
- Load(root_graph);
- root_graph->SetInputNodes();
- root_graph->SetOptimizerFlag();
- DumpAllGraphs(all_graphs);
- // Save memory profiling data to proto file
- if (ProfilingManager::GetInstance().IsProfiling()) {
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- uint64_t mem_size = runtime_instance->GetAvailableMemMaxSize();
- auto instance = MemoryProfiling::GetInstance();
- instance.SetDeviceMemSize(mem_size);
- instance.SaveMemoryProfiling();
- }
- // return the root_graph id to backend
- auto graph_id = root_graph->graph_id();
- return graph_id;
- }
-
- void AscendSession::SetFinalGraphSummaryFlag(const std::shared_ptr<KernelGraph> &kernel_graph) {
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto graph_order = GetGraphOrder(kernel_graph->graph_id());
- for (auto graph_id : graph_order) {
- auto child_graph = GetGraph(graph_id);
- if (child_graph == nullptr) {
- continue;
- }
- if (child_graph->summary_node_exist()) {
- kernel_graph->set_summary_node_exist(true);
- return;
- }
- }
- kernel_graph->set_summary_node_exist(false);
- }
-
- void AscendSession::BuildGraphImpl(GraphId graph_id) {
- MS_LOG(INFO) << "Start";
- auto graph = GetGraph(graph_id);
- MS_EXCEPTION_IF_NULL(graph);
- // resource initialize
- InitRuntimeResource();
- // multiple graph handle
- if (graph_id == final_graph_id_) {
- if (!graph->executable()) {
- return;
- }
- SetFinalGraphSummaryFlag(graph);
- // OptChildGraphs
- auto graph_order = GetGraphOrder(final_graph_id_);
- auto &graph_type = GetGraphOrderType(final_graph_id_);
- for (size_t i = 0; i < graph_order.size(); i++) {
- if (!(graph_type[i] == BRANCH_END || graph_type[i] == BRANCH_START)) {
- auto child_graph = GetGraph(graph_order[i]);
- CompileChildGraph(child_graph);
- }
- }
- SetSummaryNodes(graph.get());
- // merge child graph
- MergeGraphExecOrder();
- } else {
- auto single_graph = GetGraph(graph_id);
- MS_EXCEPTION_IF_NULL(single_graph);
- CompileChildGraph(single_graph);
- // set the distinction label of single graph
- single_graph->set_stream_distinction_label(graph_id);
- single_graph->UpdateExecuteKernelStreamLabel();
- }
- // adjust execution order because merge child graph and other special operations
- AdjustKernel(graph);
- #if ENABLE_CPU && ENABLE_D
- InitPsWorker(graph);
- #endif
- // Reorder optimizer order
- auto execution_order = graph->execution_order();
- Reorder(&execution_order);
- graph->set_execution_order(execution_order);
- // Assign streams for control sink and hccl and so on
- AssignStream(NOT_NULL(graph));
-
- device::KernelAdjust::GetInstance().Profiling(NOT_NULL(graph.get()));
- // build kernel if node is cnode
- BuildKernel(graph);
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (debugger_ && debugger_->partial_memory()) {
- debugger_->PreExecute(graph, graph_sum_);
- }
- if (ms_context->get_param<bool>(MS_CTX_PRECOMPILE_ONLY)) {
- MS_LOG(INFO) << "Precompile only, stop in build kernel step";
- } else {
- // alloc memory, including static memory and dynamic memory
- MemoryAlloc(graph.get());
- // generate and load task info to device if it is sink mode
- Load(graph);
- }
- // sync the initial const tensor to device
- SyncInitialTenosrToDevice();
- DumpAllGraphs({graph});
- MS_LOG(INFO) << "End";
- }
-
- void AscendSession::CompileChildGraph(const KernelGraphPtr &child_graph) {
- MS_EXCEPTION_IF_NULL(child_graph);
- MS_LOG(INFO) << "CompileChildGraph " << child_graph->ToString();
- opt::AscendBackendIRFusionOptimization(child_graph);
- child_graph->SetExecOrderByDefault();
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- std::string file_name = "select_kernel_before_graph_" + std::to_string(child_graph->graph_id()) + ".ir";
- DumpIR(file_name, child_graph);
- }
- // select kernel build info
- SelectKernel(*child_graph);
- if (save_graphs) {
- std::string file_name = "select_kernel_after_graph_" + std::to_string(child_graph->graph_id()) + ".ir";
- DumpIR(file_name, child_graph);
- }
- // optimize graph
- HardwareOptimize(child_graph);
- // assign static memory of parameters
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->AssignStaticMemoryInput(child_graph.get());
- runtime_instance->AssignStaticMemoryValueNode(child_graph.get());
- }
-
- bool AscendSession::IsSupportSummary() { return !device::KernelAdjust::NeedInsertSwitch(); }
-
- void AscendSession::RunGraphImpl(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs,
- VectorRef *const outputs) {
- MS_LOG(INFO) << "Start";
- auto kernel_graph = GetGraph(graph_id);
- MS_EXCEPTION_IF_NULL(kernel_graph);
- // if none of child graph and no anf output exists
- if (!kernel_graph->executable()) {
- MS_LOG(INFO) << "No child graph has anf output";
- return;
- }
- // load data to extra params
- std::set<KernelGraphPtr> memo;
- SyncDataToExtraParams(NOT_NULL(kernel_graph), NOT_NULL(&memo));
- memo.clear();
- // load input data from user input
- LoadInputData(kernel_graph, inputs);
- if (debugger_) {
- debugger_->PreExecute(kernel_graph, graph_sum_);
- }
- #if ENABLE_CPU && ENABLE_D
- // Initialize parameter server
- InitPSParamAndOptim(kernel_graph, inputs);
- std::string channel_name;
- if (ps::PsDataPrefetch::GetInstance().cache_enable() && IsGetNextGraph(graph_id, &channel_name)) {
- ps::ps_cache_instance.IncreaseGraphStep(channel_name);
- }
- #endif
- {
- // run task on device
- Execute(kernel_graph, true);
- }
- // summary
- Summary(kernel_graph.get());
- // load tensor from device for debugger
- if (debugger_ && debugger_->debugger_enabled()) {
- LoadTensor(kernel_graph);
- }
- // debugger post-execution processing
- if (debugger_) {
- debugger_->PostExecute();
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start";
- // data layout optimization
- opt::AscendDataLayout(kernel_graph);
- // mixed precision optimization
- opt::AscendMixPrecision(kernel_graph);
- MS_LOG(INFO) << "Finish";
- }
-
- bool AscendSession::GraphCacheExist(const GraphInfo &graph_info) const {
- return run_op_graphs_.find(graph_info) != run_op_graphs_.end();
- }
-
- void AscendSession::BuildOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
- const std::vector<tensor::TensorPtr> &input_tensors,
- const std::vector<int64_t> &tensors_mask) {
- MS_LOG(INFO) << "Build op " << op_run_info.op_name << " start !";
- if (GraphCacheExist(graph_info)) {
- MS_LOG(INFO) << "Build op " << op_run_info.op_name << " graph cache has existed !";
- return;
- }
-
- const auto &graph = PreBuildOp(op_run_info, graph_info, input_tensors, tensors_mask);
- MS_EXCEPTION_IF_NULL(graph);
- // init runtime resource
- InitRuntimeResource();
- // build kernel
- RunOpAdjustKernel(graph);
- BuildKernel(graph);
- run_op_graphs_[graph_info] = graph;
- MS_LOG(INFO) << "Build op " << op_run_info.op_name << " finish !";
- }
-
- void AscendSession::RunOpImpl(const GraphInfo &graph_info, OpRunInfo *op_run_info,
- std::vector<tensor::TensorPtr> *input_tensors, VectorRef *outputs,
- const std::vector<int64_t> &tensors_mask) {
- MS_EXCEPTION_IF_NULL(input_tensors);
- MS_EXCEPTION_IF_NULL(op_run_info);
- BuildOpImpl(*op_run_info, graph_info, *input_tensors, tensors_mask);
- EraseValueNodeTensor(tensors_mask, input_tensors);
- // Run op
- auto graph = run_op_graphs_[graph_info];
- MS_EXCEPTION_IF_NULL(graph);
- MS_LOG(INFO) << "Run op " << op_run_info->op_name << " start!";
- // malloc mem
- RunOpRemoveNopNode(graph);
- RunOpMemoryAlloc(*input_tensors, graph.get());
- // Build dynamic kernel
- if (op_run_info->is_dynamic_shape) {
- BuildDynamicKernel(graph);
- }
- // load input data to device
- LoadInputData(graph, *input_tensors);
- // run op
- Execute(graph, false);
- // get output
- UpdateOutputs(graph, outputs, *input_tensors);
- // update output abstract of dynamic op to op_run_info
- if (op_run_info->is_dynamic_shape) {
- UpdateOutputAbstract(graph, op_run_info);
- }
- RunOpMemoryClear(graph.get());
- MS_LOG(INFO) << "Run op " << op_run_info->op_name << " finish!";
- }
-
- KernelGraphPtr AscendSession::PreBuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
- const std::vector<tensor::TensorPtr> &input_tensors,
- const std::vector<int64_t> &tensors_mask) {
- // Construct graph include one op
- auto graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask, true);
- MS_EXCEPTION_IF_NULL(graph);
- opt::RunOpAscendBackendIRFusionOptimization(graph);
- SelectKernel(*graph);
- RunOpHardwareOptimize(graph);
- return graph;
- }
-
- void AscendSession::GetOpInputStubTensors(const CNodePtr &cnode, const std::map<AnfNodePtr, size_t> ¶meter_index,
- const std::vector<tensor::TensorPtr> &graph_inputs,
- const std::map<KernelWithIndex, OutputTensorInfo> &node_output_info,
- InputTensorInfo *input_tensor_info) {
- MS_EXCEPTION_IF_NULL(cnode);
- MS_EXCEPTION_IF_NULL(input_tensor_info);
- for (size_t i = 1; i < cnode->inputs().size(); i += 1) {
- const auto &input = cnode->input(i);
- auto kernel_with_index = AnfAlgo::VisitKernel(input, 0);
- auto real_input = kernel_with_index.first;
- MS_EXCEPTION_IF_NULL(real_input);
- tensor::TensorPtr tensor = nullptr;
- if (real_input->isa<ValueNode>()) {
- tensor = GetValueNodeOutputTensor(real_input, kernel_with_index.second);
- input_tensor_info->input_tensors_mask.emplace_back(kParameterDataTensorMask);
- } else if (real_input->isa<Parameter>()) {
- tensor = GetParameterOutputTensor(real_input, parameter_index, graph_inputs);
- auto parameter = real_input->cast<ParameterPtr>();
- MS_EXCEPTION_IF_NULL(parameter);
- input_tensor_info->input_tensors_mask.emplace_back(parameter->has_default() ? kParameterWeightTensorMask
- : kParameterDataTensorMask);
- } else if (real_input->isa<CNode>()) {
- bool output_is_weight = false;
- tensor = GetCNodeOutputStubTensor(kernel_with_index, node_output_info, &output_is_weight);
- input_tensor_info->input_tensors_mask.emplace_back(output_is_weight ? kParameterWeightTensorMask
- : kParameterDataTensorMask);
- } else {
- MS_LOG(EXCEPTION) << "Invalid input node, node = " << real_input->DebugString();
- }
- MS_EXCEPTION_IF_NULL(tensor);
- MS_LOG(DEBUG) << "Get" << i << "th input tensor of " << cnode->fullname_with_scope() << " from "
- << real_input->fullname_with_scope() << "-" << kernel_with_index.second;
- input_tensor_info->input_tensors.emplace_back(tensor);
- }
- }
-
- void AscendSession::BuildOpsInGraph(const GraphId &graph_id, const std::map<AnfNodePtr, size_t> ¶meter_index,
- const std::vector<tensor::TensorPtr> &graph_inputs) {
- if (built_graph_id_.find(graph_id) == built_graph_id_.end()) {
- return;
- }
- auto graph = GetGraph(graph_id);
- MS_EXCEPTION_IF_NULL(graph);
- std::map<KernelWithIndex, OutputTensorInfo> op_output_info;
- std::vector<CNodePtr> kernels;
- std::unordered_map<KernelGraphPtr, std::vector<GraphInfo>> single_op_graphs;
- // Collect kernels need to be built in single op graphs
- for (const auto &kernel : graph->execution_order()) {
- // Generate fake input tensors, tensor masks and input kernel with index
- InputTensorInfo input_tensor_info;
- GetOpInputStubTensors(kernel, parameter_index, graph_inputs, op_output_info, &input_tensor_info);
- // Get OpRunInfo and GraphInfo
- OpRunInfo op_run_info;
- GetSingleOpRunInfo(kernel, &op_run_info);
- const GraphInfo &graph_info = GetSingleOpGraphInfo(kernel, input_tensor_info.input_tensors);
- const auto &single_op_graph_iter = run_op_graphs_.find(graph_info);
- if (single_op_graph_iter != run_op_graphs_.end()) {
- // if graph of same single op exists, the output tensor of current op should be generated
- const auto &single_op_graph = single_op_graph_iter->second;
- GenOpOutputStubTensor(single_op_graph, kernel, &op_output_info);
- continue;
- }
- const auto &single_op_graph =
- PreBuildOp(op_run_info, graph_info, input_tensor_info.input_tensors, input_tensor_info.input_tensors_mask);
- MS_EXCEPTION_IF_NULL(single_op_graph);
- GenOpOutputStubTensor(single_op_graph, kernel, &op_output_info);
- opt::HideNopNode(single_op_graph.get());
- // The graph info could have been changed in PreBuildOp
- const GraphInfo &new_graph_info = GetSingleOpGraphInfo(kernel, input_tensor_info.input_tensors);
- single_op_graphs.insert({single_op_graph, {graph_info, new_graph_info}});
- const auto &execution_order = single_op_graph->execution_order();
- std::copy(execution_order.begin(), execution_order.end(), std::back_inserter(kernels));
- }
- InitRuntimeResource();
- // Compile all kernels parallel
- BuildKernel(kernels);
- // Some new kernel may be added after KernelBuildPreprocess, so collect and build kernels again
- kernels.clear();
- for (const auto &single_op_graph : single_op_graphs) {
- device::ascend::KernelBuildPreprocess(single_op_graph.first.get());
- const auto &execution_order = single_op_graph.first->execution_order();
- std::copy(execution_order.begin(), execution_order.end(), std::back_inserter(kernels));
- }
- BuildKernel(kernels);
- // Record single op graphs in run_op_graphs_ so that these graphs can be reused in BuildOpImpl
- for (const auto &single_op_graph : single_op_graphs) {
- for (const auto &graph_info : single_op_graph.second) {
- run_op_graphs_[graph_info] = single_op_graph.first;
- MS_LOG(DEBUG) << "Pre build op finished, graph info: " << single_op_graph.second;
- }
- }
- built_graph_id_.insert(graph_id);
- }
-
- // compile graph steps
- void AscendSession::SelectKernel(const KernelGraph &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- size_t raise_precision_count = 0;
- size_t reduce_precision_count = 0;
- for (const auto &cnode : kernel_graph.execution_order()) {
- auto status = device::ascend::SelectKernelInfo(cnode);
- AnfAlgo::EraseNodeAttr(kAttrPynativeNextOpName, cnode);
- AnfAlgo::EraseNodeAttr(kAttrPynativeNextIndex, cnode);
- if (status == device::ascend::kStatusRaisePrecision) {
- raise_precision_count++;
- } else if (status == device::ascend::kStatusReducePrecision) {
- reduce_precision_count++;
- }
- MS_LOG(INFO) << "Select ApplyKernel: " << cnode->DebugString();
- }
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (ms_context->get_param<int>(MS_CTX_EXECUTION_MODE) == kGraphMode) {
- if (raise_precision_count > 0) {
- MS_LOG(WARNING) << "There has " << raise_precision_count
- << " node/nodes used raise precision to selected the kernel!";
- }
- if (reduce_precision_count > 0) {
- MS_LOG(WARNING) << "There has " << reduce_precision_count
- << " node/nodes used reduce precision to selected the kernel!";
- }
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void DumpInit() {
- auto &json_parser = DumpJsonParser::GetInstance();
- json_parser.Parse();
- if (json_parser.async_dump_enabled()) {
- if (AdxDataDumpServerInit() != 0) {
- MS_LOG(EXCEPTION) << "Adx data dump server init failed";
- }
- }
- }
-
- void AscendSession::InitRuntimeResource() {
- MS_LOG(INFO) << "Start!";
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- if (!runtime_instance->Init()) {
- MS_LOG(EXCEPTION) << "Kernel runtime init error.";
- }
- DumpInit();
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "HardwareOptimize start!";
- opt::AscendBackendOptimization(kernel_graph);
- opt::AscendGraphKernelCommonProcess(kernel_graph);
- GraphKernelOptimize(kernel_graph);
- MS_EXCEPTION_IF_NULL(kernel_graph);
- kernel_graph->SetExecOrderByDefault();
- MS_LOG(INFO) << "HardwareOptimize Finish!";
- }
-
- void AscendSession::GraphKernelOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- if (!(context_ptr->get_param<bool>(MS_CTX_ENABLE_GRAPH_KERNEL))) {
- return;
- }
- auto optimizer = std::make_shared<opt::GraphOptimizer>();
- auto pm = std::make_shared<opt::PassManager>("graph_kernel_pm");
- pm->AddPass(std::make_shared<opt::ReorderOps>());
- pm->AddPass(std::make_shared<opt::GraphKernelExpander>());
- pm->AddPass(std::make_shared<opt::BasicOpsFusion>());
- pm->AddPass(std::make_shared<opt::EliminateRedundantOutput>());
- pm->AddPass(std::make_shared<opt::GraphKernelCSE>());
- pm->AddPass(std::make_shared<opt::TensorPromotion>());
- pm->AddPass(std::make_shared<opt::GraphKernelSplitter>());
- // After Simplify and Splitter, a lot of redundant getitem/maketuple
- // will be exposed, use GetitemTuple Pass to delete them.
- pm->AddPass(std::make_shared<opt::GetitemTuple>());
- pm->AddPass(std::make_shared<opt::BindValueToGraph>());
- pm->AddPass(std::make_shared<opt::CleanAddAtomic>());
- optimizer->AddPassManager(pm);
- (void)optimizer->Optimize(kernel_graph);
- }
-
- void AscendSession::AdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- opt::HideNopNode(kernel_graph.get());
- // Insert CLearZero op
- // prepare for next step from json get atomic info
- BuildKernel(kernel_graph);
- device::ascend::KernelBuildPreprocess(kernel_graph.get());
- device::KernelAdjust::GetInstance().InsertSwitchLoop(kernel_graph);
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- DumpIR("after_adjust_kernel.ir", kernel_graph);
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RunOpAdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- RunOpHideNopNode(kernel_graph);
- // Insert CLearZero op
- // prepare for next step from json get atomic info
- BuildKernel(kernel_graph);
- device::ascend::KernelBuildPreprocess(kernel_graph.get());
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::AssignStream(NotNull<KernelGraphPtr> kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- device::ascend::AscendStreamAssign::GetInstance().AssignStream(kernel_graph);
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- BuildKernel(kernel_graph->execution_order());
- }
-
- void AscendSession::BuildKernel(const std::vector<CNodePtr> &kernels) const {
- MS_LOG(INFO) << "Start!";
- struct timeval start_time, end_time;
- (void)gettimeofday(&start_time, nullptr);
- auto ret = device::ascend::KernelBuild(kernels);
- if (!ret) {
- MS_LOG(EXCEPTION) << "Kernel build error.";
- }
- (void)gettimeofday(&end_time, nullptr);
- const uint64_t kUSecondInSecond = 1000000;
- uint64_t cost = kUSecondInSecond * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
- cost += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
- MS_LOG(INFO) << "KernelBuild run in " << PRIu64 << " us " << cost;
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::BuildDynamicKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- MS_EXCEPTION_IF_NULL(kernel_graph);
- const auto &kernels = kernel_graph->execution_order();
- auto iter = std::find_if(kernels.begin(), kernels.end(), [](const CNodePtr &kernel) {
- return AnfAlgo::GetKernelType(kernel) == AICPU_KERNEL && AnfAlgo::GetBooleanAttr(kernel, kAttrOutputIsDynamicShape);
- });
- if (iter == kernels.end()) {
- return;
- }
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- if (!runtime_instance->GenDynamicKernel(kernel_graph.get())) {
- MS_LOG(DEBUG) << "Graph:" << kernel_graph->graph_id() << " failed to generate dynamic kernel!";
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::MemoryAlloc(KernelGraph *kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->AssignMemory(kernel_graph);
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RunOpMemoryAlloc(const std::vector<tensor::TensorPtr> &input_tensors,
- KernelGraph *kernel_graph) const {
- MS_LOG(INFO) << "Start memory alloc!";
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->RunOpAssignMemory(input_tensors, kernel_graph);
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RunOpMemoryClear(const KernelGraph *kernel_graph) const {
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->RunOpClearMemory(kernel_graph);
- }
-
- void AscendSession::Load(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool is_task_sink = context_ptr->get_param<bool>(MS_CTX_ENABLE_TASK_SINK);
- (void)device::KernelAdjust::GetInstance().StepLoadCtrlInputs(kernel_graph);
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- bool ret_ok = runtime_instance->Load(kernel_graph.get(), is_task_sink);
- if (!ret_ok) {
- MS_LOG(EXCEPTION) << "Load task error!";
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::Execute(const std::shared_ptr<KernelGraph> &kernel_graph, bool is_task) const {
- MS_LOG(INFO) << "Start!";
- bool is_task_sink = false;
- if (is_task) {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- is_task_sink = context_ptr->get_param<bool>(MS_CTX_ENABLE_TASK_SINK);
- }
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- bool ret_ok = runtime_instance->Run(kernel_graph.get(), is_task_sink);
- Dump(kernel_graph);
- if (!ret_ok) {
- #ifdef ENABLE_DUMP_IR
- mindspore::RDR::TriggerAll();
- #endif
- MS_LOG(EXCEPTION) << "run task error!";
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- MS_EXCEPTION_IF_NULL(kernel_graph);
- E2eDumpUtil::DumpData(kernel_graph.get(), device_id_);
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::DumpAllGraphs(const std::vector<KernelGraphPtr> &all_graphs) {
- #ifdef ENABLE_DUMP_IR
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (!save_graphs) {
- return;
- }
- for (auto &graph : all_graphs) {
- MS_EXCEPTION_IF_NULL(graph);
- std::string file_name = "graph_build_" + std::to_string(graph->graph_id()) + ".ir";
- DumpIR(file_name, graph, true, kWholeStack);
- DumpIRProto(graph, "vm_build_" + std::to_string(graph->graph_id()));
- DumpIR("trace_code_graph", graph, true, kWholeStack);
- }
- #endif
- }
-
- void AscendSession::LoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
- MS_LOG(INFO) << "Start!";
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- (void)runtime_instance->LoadData(kernel_graph.get());
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RecurseSetSummaryNodes(KernelGraph *graph,
- std::map<std::string, std::pair<AnfNodePtr, int>> *summary) {
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(summary);
- // if final graph have no child graph
- auto graph_order_iter = graph_execute_orders_.find(graph->graph_id());
- if (graph_order_iter == graph_execute_orders_.end()) {
- SessionBasic::SetSummaryNodes(graph);
- auto summary_nodes = graph->summary_nodes();
- summary->insert(summary_nodes.begin(), summary_nodes.end());
- return;
- }
- // for every child graph, find summary nodes
- auto graph_order = GetGraphOrder(graph->graph_id());
- for (size_t i = 0; i < graph_order.size(); i++) {
- auto child_graph = GetGraph(graph_order[i]);
- if (child_graph == nullptr) {
- continue;
- }
- SessionBasic::SetSummaryNodes(child_graph.get());
- auto child_graph_summary = child_graph->summary_nodes();
- summary->insert(child_graph_summary.begin(), child_graph_summary.end());
- RecurseSetSummaryNodes(child_graph.get(), summary);
- }
- graph->set_summary_nodes(*summary);
- }
-
- void AscendSession::SetSummaryNodes(KernelGraph *graph) {
- MS_LOG(DEBUG) << "Update summary Start";
- MS_EXCEPTION_IF_NULL(graph);
- auto summary_nodes = graph->summary_nodes();
- std::map<std::string, std::pair<AnfNodePtr, int>> summary;
- summary.insert(summary_nodes.begin(), summary_nodes.end());
- RecurseSetSummaryNodes(graph, &summary);
- graph->set_summary_nodes(summary);
- MS_LOG(DEBUG) << "Update summary end size: " << summary.size();
- }
-
- void AscendSession::MergeGraphExecOrder() {
- MS_LOG(INFO) << "Start!";
- // merge graph order
- auto &graph_order = GetGraphOrder(final_graph_id_);
- auto &graph_type = GetGraphOrderType(final_graph_id_);
- auto final_graph = GetGraph(final_graph_id_);
- MS_EXCEPTION_IF_NULL(final_graph);
- if (graph_order.empty()) {
- MS_LOG(WARNING) << "Graph output is a lonely variable not linked to any op!";
- return;
- }
- if (graph_order.size() > 1) {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- if (!context_ptr->get_param<bool>(MS_CTX_ENABLE_TASK_SINK)) {
- MS_LOG(EXCEPTION) << "Control sink network should run with task-sink mode!";
- }
- }
- // if first graph is common,the final graph has no label,then set the stream of final graph same with the first graph
- SetStreamDistinctionLabel(final_graph, graph_order[0], false);
- std::vector<CNodePtr> final_exec_order = final_graph->execution_order();
- KernelGraphPtr last_graph = nullptr;
- for (size_t i = 0; i < graph_order.size(); i++) {
- auto graph_id = graph_order[i];
- if (graph_type[i] == BRANCH_END || graph_type[i] == BRANCH_START) {
- continue;
- }
- auto child_graph = GetGraph(graph_id);
- last_graph = child_graph;
- MS_EXCEPTION_IF_NULL(child_graph);
- auto exec_order = child_graph->execution_order();
- MS_LOG(INFO) << "Merge graph,graph_id " << graph_id;
- (void)std::transform(exec_order.begin(), exec_order.end(), std::back_inserter(final_exec_order),
- [&](CNodePtr node) -> CNodePtr {
- AnfAlgo::SetStreamDistinctionLabel(child_graph->stream_distinction_label(), node.get());
- return node;
- });
- // add all value nodes of child graphs to final graph
- for (auto &value_node : child_graph->graph_value_nodes()) {
- final_graph->AddValueNodeToGraph(value_node);
- }
- // copy ref map to final graph
- auto child_ref_map = child_graph->GetRefMap();
- for (auto &item : child_ref_map) {
- if (final_graph->IsInRefOutputMap(item.first)) {
- MS_LOG(EXCEPTION) << "The ref pair is already in final graph!";
- }
- final_graph->AddRefCorrespondPairs(item.first, item.second);
- }
- }
- // set final_exec_order into final graph
- MS_EXCEPTION_IF_NULL(final_graph);
- DumpGraphExeOrder(final_exec_order);
- final_graph->set_execution_order(final_exec_order);
- }
-
- const std::vector<GraphId> &AscendSession::GetGraphOrder(GraphId final_graph_id) const {
- auto graph_order_iter = graph_execute_orders_.find(final_graph_id);
- if (graph_order_iter == graph_execute_orders_.end()) {
- MS_LOG(EXCEPTION) << "Final graph" << final_graph_id << "has no child graph";
- }
- return graph_order_iter->second;
- }
-
- const std::vector<GraphType> &AscendSession::GetGraphOrderType(GraphId final_graph_id) const {
- auto graph_type_iter = graph_order_types_.find(final_graph_id);
- if (graph_type_iter == graph_order_types_.end()) {
- MS_LOG(EXCEPTION) << "Final graph" << final_graph_id << "has no graph_order_types_";
- }
- return graph_type_iter->second;
- }
-
- void AscendSession::SyncInitialTenosrToDevice() {
- for (auto &item : initial_tenosrs_) {
- auto to_graph_id = item.first.first;
- auto input_idx = item.first.second;
- auto front_tensor = item.second;
- auto to_graph = GetGraph(to_graph_id);
- MS_EXCEPTION_IF_NULL(to_graph);
- std::vector<AnfNodePtr> graph_inputs = to_graph->inputs();
- if (input_idx >= graph_inputs.size()) {
- MS_LOG(EXCEPTION) << "Input_index " << input_idx << " out of range size " << graph_inputs.size();
- }
- auto backend_parameter = graph_inputs[input_idx];
- // sync data from host to device
- MS_EXCEPTION_IF_NULL(front_tensor);
- size_t tensor_size = front_tensor->data().nbytes();
- auto addr = AnfAlgo::GetOutputAddr(backend_parameter, 0);
- MS_EXCEPTION_IF_NULL(addr);
- if (!addr->SyncHostToDevice(trans::GetRuntimePaddingShape(backend_parameter, 0), tensor_size,
- front_tensor->data_type(), front_tensor->data_c())) {
- MS_LOG(EXCEPTION) << "Tensor SyncHostToDevice fail!";
- }
- }
- }
-
- void AscendSession::BackendOptimization(const std::vector<KernelGraphPtr> &all_graphs) {
- MS_LOG(INFO) << "Start BackendCommonOptimization";
- for (auto &graph : all_graphs) {
- opt::BackendCommonOptimization(graph);
- }
- MS_LOG(INFO) << "End.";
- }
-
- void AscendSession::LinkChildGraphs(NotNull<KernelGraphPtr> graph) { AscendControlParser::LinkGraph(graph); }
-
- bool AscendSession::IsMultiCallGraph(NotNull<KernelGraphPtr> graph, std::vector<GraphId> parent_graphs) {
- std::stack<GraphId> post_graph;
- std::set<GraphId> memo;
- post_graph.push(graph->graph_id());
- while (!post_graph.empty()) {
- auto graph_id = post_graph.top();
- post_graph.pop();
- memo.insert(graph_id);
- for (auto child_graph : graphs_[graph_id]->child_graph_order()) {
- std::shared_ptr<KernelGraph> child_graph_ptr = child_graph.lock();
- MS_EXCEPTION_IF_NULL(child_graph_ptr);
- if (std::find(parent_graphs.begin(), parent_graphs.end(), child_graph_ptr->graph_id()) != parent_graphs.end()) {
- MS_LOG(DEBUG) << "graph:" << graph->graph_id() << " will call its parent graph:" << child_graph_ptr->graph_id();
- return false;
- } else if (memo.find(child_graph_ptr->graph_id()) == memo.end()) {
- MS_LOG(DEBUG) << "child graph:" << child_graph_ptr->graph_id() << " into deque, wait for check.";
- post_graph.push(child_graph_ptr->graph_id());
- }
- }
- }
- return true;
- }
-
- void AscendSession::MultiCallGraphOptimize(NotNull<KernelGraphPtr> root_graph) {
- for (auto current : parent_graphs_) {
- if (current.second.size() < 2) {
- continue;
- }
- auto graph = graphs_[current.first];
- auto parent_kernel_graphs = current.second;
- if (!IsMultiCallGraph(NOT_NULL(graph), parent_kernel_graphs)) {
- MS_LOG(DEBUG) << "graph:" << graph->graph_id() << " with it's parent graphs make up a cycle";
- continue;
- }
- MS_LOG(INFO) << "graph: " << graph->graph_id() << " has been called by more than two graphs";
- int32_t index = 0;
- std::vector<KernelGraphPtr> child_graphs;
- auto start_label_id = AnfAlgo::GetNodeAttr<uint32_t>(graph->get_start_label(), kAttrLabelIndex);
- auto end_node = graph->get_end_goto();
- ParameterPtr post_label_param = graph->AddExtraParamAndTensor("label_param", 0);
- std::vector<AnfNodePtr> new_inputs = {std::make_shared<ValueNode>(std::make_shared<Primitive>(kLabelSwitchOpName)),
- post_label_param};
- for (auto graph_id : parent_kernel_graphs) {
- auto kg = graphs_[graph_id];
- auto nodes = kg->execution_order();
- for (uint32_t i = 0; i < nodes.size(); i++) {
- if (AnfAlgo::IsLabelIndexInNode(nodes[i], start_label_id)) {
- if (i < (nodes.size() - 1)) {
- new_inputs.push_back(nodes[i + 1]);
- } else {
- MS_LOG(EXCEPTION) << "No labelset after labelgoto";
- }
- ParameterPtr pre_label_param = kg->AddExtraParamAndTensor("label_param", index++);
- AscendControlParser::InsertMultipleAssignToGraph(NOT_NULL(kg), nodes[i], NOT_NULL(pre_label_param),
- NOT_NULL(post_label_param));
- }
- }
- kg->SetExecOrderByDefault();
- child_graphs.push_back(kg);
- }
- end_node->set_inputs(new_inputs);
- AnfAlgo::SetNodeAttr(kAttrChildGraph, MakeValue<std::vector<KernelGraphPtr>>(child_graphs), end_node);
- std::vector<uint32_t> label_list;
- for (size_t i = kLabelSwitchLabelId; i < end_node->size(); ++i) {
- auto input = end_node->input(i);
- MS_EXCEPTION_IF_NULL(input);
- if (!input->isa<CNode>() || AnfAlgo::GetCNodeName(input) != kLabelSetOpName) {
- break;
- }
- uint32_t goto_label_id = AnfAlgo::GetNodeAttr<uint32_t>(input, kAttrLabelIndex);
- label_list.push_back(goto_label_id);
- MS_LOG(INFO) << "Switch " << end_node->DebugString() << " case " << i - kLabelSwitchLabelId << ": id "
- << goto_label_id;
- }
- AnfAlgo::SetNodeAttr(kAttrLabelSwitchList, MakeValue<std::vector<uint32_t>>(label_list), end_node);
- end_node->set_inputs({end_node->input(kAnfPrimitiveIndex), end_node->input(kFirstDataInputIndex)});
- graph->SetExecOrderByDefault();
- }
- }
-
- void AscendSession::SyncDataToExtraParams(NotNull<KernelGraphPtr> graph, NotNull<std::set<KernelGraphPtr> *> memo) {
- if (memo->find(graph.get()) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
- auto extra_param_tensor = graph->GetExtraParamAndTensor();
- for (uint32_t i = 0; i < extra_param_tensor.size(); i++) {
- auto param = extra_param_tensor[i].first;
- auto tensor = extra_param_tensor[i].second;
- auto device_address = AnfAlgo::GetMutableOutputAddr(param, 0);
- MS_EXCEPTION_IF_NULL(device_address);
- tensor->set_device_address(device_address);
- if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(param, 0), LongToSize(tensor->data().nbytes()),
- tensor->data_type(), tensor->data_c())) {
- MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
- }
- }
- for (auto &child_graph : graph->child_graph_order()) {
- SyncDataToExtraParams(NOT_NULL(child_graph.lock()), memo);
- }
- }
-
- void AscendSession::RootGraphExecutorValidate(NotNull<KernelGraphPtr> graph) {
- AscendControlParser::ExecutorValidate(graph);
- }
-
- void AscendSession::CreateMultiBranchOutput(NotNull<KernelGraphPtr> graph, NotNull<std::set<KernelGraphPtr> *> memo) {
- if (memo->find(graph.get()) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
- graph->UpdateChildGraphOrder();
- for (auto &child_graph : graph->child_graph_order()) {
- CreateMultiBranchOutput(NOT_NULL(child_graph.lock()), memo);
- }
- std::map<AnfNodePtr, AnfNodePtr> need_replace_list;
- auto node_list = GetCNodes(TopoSort(graph->get_return()));
- for (auto &node : node_list) {
- if (AnfAlgo::CheckPrimitiveType(node, prim::kPrimCall) || AnfAlgo::CheckPrimitiveType(node, prim::kPrimSwitch) ||
- AnfAlgo::CheckPrimitiveType(node, prim::kPrimSwitchLayer)) {
- // create a parameter to store the output of multiple branch and set the parameter as the condition graph's output
- auto output_param = graph->TransTupleToMakeTuple(graph->NewParameter(node->abstract()));
- MS_EXCEPTION_IF_NULL(graph->MutableInputs());
- graph->AddChildGraphResult(output_param);
-
- std::vector<AnfNodePtr> depend_inputs = {
- graph->NewValueNode(NewValueNode(std::make_shared<Primitive>(prim::kPrimDepend->name()))), output_param, node};
- auto depend = graph->NewCNode(depend_inputs);
- depend->set_abstract(output_param->abstract());
- need_replace_list.emplace(node, depend);
- MS_LOG(INFO) << "Create parameter " << output_param->DebugString() << " for call node " << node->DebugString()
- << ", depend node is " << depend->DebugString();
- // insert assign in order to transfer child graph output to parameter
- auto child_graphs = AnfAlgo::GetCallSwitchKernelGraph(node);
- for (auto &child_graph : child_graphs) {
- MS_EXCEPTION_IF_NULL(child_graph);
- // If graph has no output, the graph is the true graph of while and will call condition graph, no need insert
- // assign from condition to true graph
- if (memo->find(child_graph) != memo->end()) {
- continue;
- }
- AscendControlParser::InsertMultipleAssignToGraph(NOT_NULL(child_graph), nullptr,
- NOT_NULL(child_graph->output()), NOT_NULL(output_param));
- }
- }
- }
- // searching for nodes' input to replace call by depend(parameter, call)
- for (auto &node : node_list) {
- for (size_t i = 0; i < node->size(); ++i) {
- auto input = node->input(i);
- auto iter = need_replace_list.find(input);
- if (iter != need_replace_list.end()) {
- node->set_input(i, iter->second);
- }
- }
- }
- memo->erase(graph.get());
- }
-
- void AscendSession::IrFusionPass(const NotNull<KernelGraphPtr> graph, NotNull<std::set<KernelGraphPtr> *> memo) {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
- opt::AscendBackendIRFusionOptimization(graph);
- graph->SetExecOrderByDefault();
-
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- std::string file_name = "select_kernel_before_graph_" + std::to_string(graph->graph_id()) + ".ir";
- DumpIR(file_name, graph.get());
- }
-
- for (auto &child_graph : graph->child_graph_order()) {
- IrFusionPass(NOT_NULL(child_graph.lock()), memo);
- }
- }
-
- void AscendSession::SelectKernel(NotNull<KernelGraphPtr> root_graph) {
- MS_LOG(INFO) << "Start select kernel.";
- size_t raise_precision_count = 0;
- size_t reduce_precision_count = 0;
-
- std::set<KernelGraphPtr> memo;
- (void)RecurseSelectKernelInfo(root_graph, NOT_NULL(&memo), &raise_precision_count, &reduce_precision_count);
- memo.clear();
-
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (ms_context->get_param<int>(MS_CTX_EXECUTION_MODE) == kGraphMode) {
- if (raise_precision_count > 0) {
- MS_LOG(WARNING) << "There are " << raise_precision_count
- << " node/nodes used raise precision to selected the kernel!";
- }
- if (reduce_precision_count > 0) {
- MS_LOG(WARNING) << "There are " << reduce_precision_count
- << " node/nodes used reduce precision to selected the kernel!";
- }
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- void AscendSession::RecurseSelectKernelInfo(NotNull<KernelGraphPtr> graph,
- NotNull<std::set<KernelGraphPtr> *> const memo,
- size_t *const raise_precision_count,
- size_t *const reduce_precision_count) const {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
- MS_LOG(INFO) << "Start to select kernel info in graph: " << graph->graph_id();
-
- for (const auto &cnode : graph->execution_order()) {
- if (AnfAlgo::IsCondControlKernel(cnode)) {
- std::vector<KernelGraphPtr> child_graphs;
- if (AnfAlgo::HasNodeAttr(kAttrChildGraph, cnode)) {
- child_graphs = AnfAlgo::GetNodeAttr<std::vector<KernelGraphPtr>>(cnode, kAttrChildGraph);
- }
- for (auto &child_graph : child_graphs) {
- RecurseSelectKernelInfo(NOT_NULL(child_graph), memo, raise_precision_count, reduce_precision_count);
- }
- }
-
- auto status = device::ascend::SelectKernelInfo(cnode);
- if (status == device::ascend::kStatusRaisePrecision) {
- (*raise_precision_count)++;
- } else if (status == device::ascend::kStatusReducePrecision) {
- (*reduce_precision_count)++;
- }
- }
-
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
- if (save_graphs) {
- std::string file_name = "select_kernel_after_graph_" + std::to_string(graph->graph_id()) + ".ir";
- DumpIR(file_name, graph.get());
- }
- MS_LOG(INFO) << "Finish selecting kernel info in graph: " << graph->graph_id();
- }
-
- void AscendSession::HardwareOptimize(NotNull<KernelGraphPtr> graph,
- NotNull<std::set<KernelGraphPtr> *> const memo) const {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
-
- MS_LOG(INFO) << "Start to do HardwareOptimize in graph: " << graph->graph_id();
-
- HardwareOptimize(graph.get());
- for (auto &child_graph : graph->child_graph_order()) {
- HardwareOptimize(NOT_NULL(child_graph.lock()), memo);
- }
- MS_LOG(INFO) << "Finish doing HardwareOptimize in graph: " << graph->graph_id();
- }
-
- void AscendSession::LoadGraphsToDbg(NotNull<KernelGraphPtr> graph,
- NotNull<std::set<KernelGraphPtr> *> const memo) const {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
-
- MS_LOG(INFO) << "Start to do LoadGraphsToDbg in graph: " << graph->graph_id();
-
- debugger_->LoadGraphs(graph);
- MS_LOG(INFO) << "graph_sum_: " << graph_sum_;
- for (auto &child_graph : graph->child_graph_order()) {
- LoadGraphsToDbg(NOT_NULL(child_graph.lock()), memo);
- }
- MS_LOG(INFO) << "Finish doing LoadGraphsToDbg in graph: " << graph->graph_id();
- }
-
- void AscendSession::AssignStaticMemory(NotNull<KernelGraphPtr> graph,
- NotNull<std::set<KernelGraphPtr> *> const memo) const {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
-
- MS_LOG(INFO) << "Start to assign static memory for parameter in graph: " << graph->graph_id();
- // assign static memory for parameters
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->ClearGlobalIdleMem();
- runtime_instance->AssignStaticMemoryInput(graph.get().get());
- runtime_instance->AssignStaticMemoryValueNode(graph.get().get());
- for (auto &child_graph : graph->child_graph_order()) {
- AssignStaticMemory(NOT_NULL(child_graph.lock()), memo);
- }
- MS_LOG(INFO) << "Finish assigning static memory for parameter in graph: " << graph->graph_id();
- }
-
- void AscendSession::UpdateRefOutputMap(NotNull<KernelGraphPtr> graph,
- NotNull<std::set<KernelGraphPtr> *> const memo) const {
- if (memo->find(graph) != memo->end()) {
- return;
- }
- memo->insert(graph.get());
-
- for (auto &child_graph : graph->child_graph_order()) {
- std::shared_ptr<KernelGraph> child_graph_ptr = child_graph.lock();
- MS_EXCEPTION_IF_NULL(child_graph_ptr);
- UpdateRefOutputMap(NOT_NULL(child_graph_ptr), memo);
- // copy ref map to final graph
- auto child_ref_map = child_graph_ptr->GetRefMap();
- for (auto &item : child_ref_map) {
- if (graph->IsInRefOutputMap(item.first)) {
- MS_LOG(WARNING) << "The ref pair <" << item.first.first->DebugString() << ", " << item.first.second
- << "> is already in " << graph->ToString();
- continue;
- }
- graph->AddRefCorrespondPairs(item.first, item.second);
- }
- }
- }
-
- GraphId AscendSession::CompileGraphImpl(NotNull<FuncGraphPtr> func_graph, const vector<tensor::TensorPtr> &inputs) {
- RunInfer(func_graph, inputs);
- return CompileGraphImpl(func_graph);
- }
-
- void AscendSession::SyncStream() {
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- auto ret = runtime_instance->SyncStream();
- if (!ret) {
- MS_LOG(EXCEPTION) << "Sync stream error!";
- }
- }
- } // namespace session
- } // namespace mindspore
|