|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
- import numpy as np
-
- from mindspore.communication.management import init
- from mindspore.communication.management import release
- from mindspore.communication.management import get_rank
- from mindspore.communication.management import get_group_size
- from mindspore.nn import Cell
- from mindspore.nn import ReLU
- from mindspore.nn import Dense
- from mindspore.nn import Flatten
- from mindspore.nn import Momentum
- import mindspore.ops.operations as P
- from mindspore.train.serialization import load_param_into_net
- from mindspore.train.callback import CheckpointConfig
- from mindspore.train.callback import ModelCheckpoint
- from mindspore.train.serialization import load_checkpoint
-
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
- from mindspore.train import Model
- from mindspore.parallel import set_algo_parameters
- from mindspore import Tensor
- from mindspore.common.parameter import Parameter
- from mindspore import context
- from mindspore.context import ParallelMode
-
- context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
-
- def _count_unequal_element(data_expected, data_me, rtol, atol):
- assert data_expected.shape == data_me.shape
- total_count = len(data_expected.flatten())
- error = np.abs(data_expected - data_me)
- greater = np.greater(error, atol + np.abs(data_me) * rtol)
- loss_count = np.count_nonzero(greater)
- assert (loss_count / total_count) < rtol, \
- "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
- format(data_expected[greater], data_me[greater], error[greater])
-
-
- def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
- if np.any(np.isnan(data_expected)):
- assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
- elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
- _count_unequal_element(data_expected, data_me, rtol, atol)
- else:
- assert True
-
- def clean_all_ckpt_files(folder_path):
- if os.path.exists(folder_path):
- for file_name in os.listdir(folder_path):
- if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
- os.remove(os.path.join(folder_path, file_name))
-
-
- def find_newest_ckpt_file(folder_path):
- ckpt_files = map(lambda f: os.path.join(folder_path, f),
- filter(lambda f: f.endswith('.ckpt'),
- os.listdir(folder_path)))
- return max(ckpt_files, key=os.path.getctime)
-
-
- class FakeDataInitMode:
- RandomInit = 0
- OnesInit = 1
- UniqueInit = 2
- ZerosInit = 3
-
-
- class FakeData:
- def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
- num_classes=10, random_offset=0, use_parallel=False,
- fakedata_mode=FakeDataInitMode.RandomInit):
- self.size = size
- self.rank_batch_size = batch_size
- self.total_batch_size = self.rank_batch_size
- self.random_offset = random_offset
- self.image_size = image_size
- self.num_classes = num_classes
- self.rank_size = 1
- self.rank_id = 0
- self.batch_index = 0
- self.image_data_type = np.float32
- self.label_data_type = np.float32
- self.is_onehot = True
- self.fakedata_mode = fakedata_mode
-
- if use_parallel is True:
- init(backend_name='hccl')
- self.rank_size = get_group_size()
- self.rank_id = get_rank()
-
- self.total_batch_size = self.rank_batch_size * self.rank_size
-
- assert (self.size % self.total_batch_size) == 0
-
- self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
-
- def get_dataset_size(self):
- return int(self.size / self.total_batch_size)
-
- def get_repeat_count(self):
- return 1
-
- def set_image_data_type(self, data_type):
- self.image_data_type = data_type
-
- def set_label_data_type(self, data_type):
- self.label_data_type = data_type
-
- def set_label_onehot(self, is_onehot=True):
- self.is_onehot = is_onehot
-
- def create_tuple_iterator(self, num_epochs=-1):
- _ = num_epochs
- return self
-
- def __getitem__(self, batch_index):
- if batch_index * self.total_batch_size >= len(self):
- raise IndexError("{} index out of range".format(self.__class__.__name__))
- rng_state = np.random.get_state()
- np.random.seed(batch_index + self.random_offset)
- if self.fakedata_mode == FakeDataInitMode.OnesInit:
- img = np.ones(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
- img = np.zeros(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
- total_size = 1
- for i in self.total_batch_data_size:
- total_size = total_size * i
- img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
- else:
- img = np.random.randn(*self.total_batch_data_size)
- target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
- np.random.set_state(rng_state)
- img = img[self.rank_id]
- target = target[self.rank_id]
- img_ret = img.astype(self.image_data_type)
- target_ret = target.astype(self.label_data_type)
- if self.is_onehot:
- target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
- target_onehot[np.arange(self.rank_batch_size), target] = 1
- target_ret = target_onehot.astype(self.label_data_type)
- return Tensor(img_ret), Tensor(target_ret)
-
- def __len__(self):
- return self.size
-
- def __iter__(self):
- self.batch_index = 0
- return self
-
- def reset(self):
- self.batch_index = 0
-
- def __next__(self):
- if self.batch_index * self.total_batch_size < len(self):
- data = self[self.batch_index]
- self.batch_index += 1
- return data
- raise StopIteration
-
-
- class OptimizerSemiAutoAndAutoParallel6Net(Cell):
- def __init__(self, strategy_dict=None):
- super().__init__()
- shared_np = np.full((16, 1, 32, 32), 0.5, dtype=np.float32)
- self.shared_weight = Parameter(Tensor(shared_np), name='shared_weight')
- self.fc1 = Dense(in_channels=1024,
- out_channels=116,
- weight_init='ones',
- bias_init='ones',
- has_bias=True)
- self.relu = ReLU()
- self.sigmoid = P.Sigmoid()
- self.add1 = P.TensorAdd()
- self.add2 = P.TensorAdd()
- self.mul1 = P.Mul().add_prim_attr('primitive_target', 'CPU')
- self.mul2 = P.Mul()
- self.mul3 = P.Mul()
- self.flatten = Flatten()
-
- mul2_weight_np = np.full((16, 116), 1, dtype=np.float32)
- self.mul2_weight = Parameter(Tensor(mul2_weight_np), name='mul2_weight')
-
- mul3_weight_np = np.full((16, 116), 1, dtype=np.float32)
- self.mul3_weight = Parameter(Tensor(mul3_weight_np), name='mul3_weight')
-
- if strategy_dict is not None:
- self.add1.shard(strategy_dict['add1'])
- self.mul1.shard(strategy_dict['mul1'])
- self.fc1.matmul.shard(strategy_dict['fc1_matmul'])
- self.fc1.bias_add.shard(strategy_dict['fc1_bias_add'])
- self.mul2.shard(strategy_dict['mul2'])
- self.mul3.shard(strategy_dict['mul3'])
-
- def construct(self, inputs):
- relu = self.relu(inputs)
- sigmoid = self.sigmoid(inputs)
- add1 = self.add1(relu, self.shared_weight)
- mul = self.mul1(sigmoid, self.shared_weight)
- add2 = self.add2(add1, mul)
- flatten = self.flatten(add2)
- dense = self.fc1(flatten)
- mul2 = self.mul2(dense, self.mul2_weight)
- out = self.mul3(mul2, self.mul3_weight)
- return out
-
-
- class OptimizerSemiAutoAndAutoParallelFactory:
- def __init__(self, net, strategy_dict=None):
- self.parallel_ckpt = None
- self.optimizer_parallel_ckpt = None
- self.net = net
- self.strategy_dict = strategy_dict
- self.global_rank_id = None
- self._set_parallel_env()
- self._init_parallel()
-
- def __enter__(self):
- return self
-
- def __exit__(self, exc_type, exc_val, exc_tb):
- return
-
- def __del__(self):
- self._release_parallel()
-
- def _set_parallel_env(self):
- if 'RANK_ID' in os.environ:
- self.global_rank_id = int(os.environ['RANK_ID'])
-
- def _init_parallel(self):
- self._init_parallel_flag = False
- init(backend_name='hccl')
- self._init_parallel_flag = True
-
- def _release_parallel(self):
- if self._init_parallel_flag:
- release()
-
- def _model_train_and_save_ckpt(self, net, dataset, epoch):
- self.opt = Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
- self.loss_fn = SoftmaxCrossEntropyWithLogits(reduction='mean')
- self.model = Model(network=net,
- loss_fn=self.loss_fn,
- optimizer=self.opt)
- ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
- ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
- ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
- config=ckpt_config)
- clean_all_ckpt_files(ckpt_path)
- self.model.train(epoch=epoch,
- train_dataset=dataset,
- callbacks=[ckpt_callback],
- dataset_sink_mode=False)
- newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
- return load_checkpoint(newest_ckpt_file)
-
- def mindspore_auto_parallel_impl(self,
- dataset,
- epoch,
- device_num):
- set_algo_parameters(fully_use_devices=False)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
- device_num=device_num)
- parallel_mode_net = self.net(self.strategy_dict)
- self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
- dataset=dataset, epoch=epoch)
- context.reset_auto_parallel_context()
-
- def mindspore_optimizer_auto_parallel_impl(self,
- dataset,
- epoch,
- device_num):
- set_algo_parameters(fully_use_devices=False)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
- device_num=device_num,
- enable_parallel_optimizer=True)
- parallel_mode_net = self.net(self.strategy_dict)
- self.optimizer_parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
- dataset=dataset, epoch=epoch)
- context.reset_auto_parallel_context()
-
- def checkpoint_cmp(self, inputs_np):
- optimizer_parallel_net = self.net(self.strategy_dict)
- load_param_into_net(optimizer_parallel_net, self.optimizer_parallel_ckpt)
- optimizer_parallel_out = optimizer_parallel_net(Tensor(inputs_np))
-
- parallel_net = self.net(self.strategy_dict)
- load_param_into_net(parallel_net, self.parallel_ckpt)
- parallel_out = parallel_net(Tensor(inputs_np))
- allclose_nparray(optimizer_parallel_out.asnumpy(), parallel_out.asnumpy(), 0.001, 0.001)
-
- def test_optimizer_parallel_auto_4p_6_parameter_same_strategy_1_1_2_1_momentum():
- inputs_np = np.random.randn(16, 1, 32, 32).astype(np.float32)
- dataset = FakeData(size=32,
- batch_size=4,
- image_size=(1, 32, 32),
- use_parallel=True,
- num_classes=116)
- strategy_dict = {'add1': ((1, 1, 2, 1), (1, 1, 2, 1)),
- 'mul1': ((1, 1, 2, 1), (1, 1, 2, 1)),
- 'fc1_matmul': ((1, 2), (1, 2)),
- 'fc1_bias_add': ((1, 2), (2,)),
- 'mul2': ((1, 2), (1, 2)),
- 'mul3': ((1, 2), (1, 2))}
- fact = OptimizerSemiAutoAndAutoParallelFactory(net=OptimizerSemiAutoAndAutoParallel6Net,
- strategy_dict=strategy_dict)
- fact.mindspore_auto_parallel_impl(dataset=dataset, epoch=2, device_num=4)
- fact.mindspore_optimizer_auto_parallel_impl(dataset=dataset, epoch=2, device_num=4)
- fact.checkpoint_cmp(inputs_np=inputs_np)
|