|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """FastText for train"""
- import os
- import time
- import argparse
- from mindspore import context
- from mindspore.nn.optim import Adam
- from mindspore.common import set_seed
- from mindspore.train.model import Model
- import mindspore.common.dtype as mstype
- from mindspore.common.tensor import Tensor
- from mindspore.context import ParallelMode
- from mindspore.train.callback import Callback, TimeMonitor
- from mindspore.communication import management as MultiAscend
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.load_dataset import load_dataset
- from src.lr_schedule import polynomial_decay_scheduler
- from src.fasttext_train import FastTextTrainOneStepCell, FastTextNetWithLoss
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--data_path', type=str, required=True, help='FastText input data file path.')
- parser.add_argument('--data_name', type=str, required=True, default='ag', help='dataset name. eg. ag, dbpedia')
- args = parser.parse_args()
-
- if args.data_name == "ag":
- from src.config import config_ag as config
- elif args.data_name == 'dbpedia':
- from src.config import config_db as config
- elif args.data_name == 'yelp_p':
- from src.config import config_yelpp as config
-
- def get_ms_timestamp():
- t = time.time()
- return int(round(t * 1000))
- set_seed(5)
- time_stamp_init = False
- time_stamp_first = 0
- rank_id = os.getenv('DEVICE_ID')
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target="Ascend")
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
-
- If the loss is NAN or INF terminating training.
-
- Note:
- If per_print_times is 0 do not print loss.
-
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, per_print_times=1, rank_ids=0):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0.")
- self._per_print_times = per_print_times
- self.rank_id = rank_ids
- global time_stamp_init, time_stamp_first
- if not time_stamp_init:
- time_stamp_first = get_ms_timestamp()
- time_stamp_init = True
-
- def step_end(self, run_context):
- """Monitor the loss in training."""
- global time_stamp_first
- time_stamp_current = get_ms_timestamp()
- cb_params = run_context.original_args()
- print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
- cb_params.cur_epoch_num,
- cb_params.cur_step_num,
- str(cb_params.net_outputs)))
- with open("./loss_{}.log".format(self.rank_id), "a+") as f:
- f.write("time: {}, epoch: {}, step: {}, loss: {}".format(
- time_stamp_current - time_stamp_first,
- cb_params.cur_epoch_num,
- cb_params.cur_step_num,
- str(cb_params.net_outputs.asnumpy())))
- f.write('\n')
-
-
- def _build_training_pipeline(pre_dataset):
- """
- Build training pipeline
-
- Args:
- pre_dataset: preprocessed dataset
- """
- net_with_loss = FastTextNetWithLoss(config.vocab_size, config.embedding_dims, config.num_class)
- net_with_loss.init_parameters_data()
- if config.pretrain_ckpt_dir:
- parameter_dict = load_checkpoint(config.pretrain_ckpt_dir)
- load_param_into_net(net_with_loss, parameter_dict)
- if pre_dataset is None:
- raise ValueError("pre-process dataset must be provided")
-
- #get learning rate
- update_steps = config.epoch * pre_dataset.get_dataset_size()
- decay_steps = pre_dataset.get_dataset_size()
- rank_size = os.getenv("RANK_SIZE")
- if isinstance(rank_size, int):
- raise ValueError("RANK_SIZE must be integer")
- if rank_size is not None and int(rank_size) > 1:
- base_lr = config.lr
- else:
- base_lr = config.lr / 10
- print("+++++++++++Total update steps ", update_steps)
- lr = Tensor(polynomial_decay_scheduler(lr=base_lr,
- min_lr=config.min_lr,
- decay_steps=decay_steps,
- total_update_num=update_steps,
- warmup_steps=config.warmup_steps,
- power=config.poly_lr_scheduler_power), dtype=mstype.float32)
- optimizer = Adam(net_with_loss.trainable_params(), lr, beta1=0.9, beta2=0.999)
-
- net_with_grads = FastTextTrainOneStepCell(net_with_loss, optimizer=optimizer)
- net_with_grads.set_train(True)
- model = Model(net_with_grads)
- loss_monitor = LossCallBack(rank_ids=rank_id)
- dataset_size = pre_dataset.get_dataset_size()
- time_monitor = TimeMonitor(data_size=dataset_size)
- ckpt_config = CheckpointConfig(save_checkpoint_steps=decay_steps * config.epoch,
- keep_checkpoint_max=config.keep_ckpt_max)
- callbacks = [time_monitor, loss_monitor]
- if rank_size is None or int(rank_size) == 1:
- ckpt_callback = ModelCheckpoint(prefix='fasttext',
- directory=os.path.join('./', 'ckpt_{}'.format(os.getenv("DEVICE_ID"))),
- config=ckpt_config)
- callbacks.append(ckpt_callback)
- if rank_size is not None and int(rank_size) > 1 and MultiAscend.get_rank() % 8 == 0:
- ckpt_callback = ModelCheckpoint(prefix='fasttext',
- directory=os.path.join('./', 'ckpt_{}'.format(os.getenv("DEVICE_ID"))),
- config=ckpt_config)
- callbacks.append(ckpt_callback)
- print("Prepare to Training....")
- epoch_size = pre_dataset.get_repeat_count()
- print("Epoch size ", epoch_size)
- if os.getenv("RANK_SIZE") is not None and int(os.getenv("RANK_SIZE")) > 1:
- print(f" | Rank {MultiAscend.get_rank()} Call model train.")
- model.train(epoch=config.epoch, train_dataset=pre_dataset, callbacks=callbacks, dataset_sink_mode=False)
-
-
- def train_single(input_file_path):
- """
- Train model on single device
- Args:
- input_file_path: preprocessed dataset path
- """
- print("Staring training on single device.")
- preprocessed_data = load_dataset(dataset_path=input_file_path,
- batch_size=config.batch_size,
- epoch_count=config.epoch_count,
- bucket=config.buckets)
- _build_training_pipeline(preprocessed_data)
-
-
- def set_parallel_env():
- context.reset_auto_parallel_context()
- MultiAscend.init()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
- device_num=MultiAscend.get_group_size(),
- gradients_mean=True)
- def train_paralle(input_file_path):
- """
- Train model on multi device
- Args:
- input_file_path: preprocessed dataset path
- """
- set_parallel_env()
- print("Starting traning on multiple devices. |~ _ ~| |~ _ ~| |~ _ ~| |~ _ ~|")
- preprocessed_data = load_dataset(dataset_path=input_file_path,
- batch_size=config.batch_size,
- epoch_count=config.epoch_count,
- rank_size=MultiAscend.get_group_size(),
- rank_id=MultiAscend.get_rank(),
- bucket=config.buckets,
- shuffle=False)
- _build_training_pipeline(preprocessed_data)
-
- if __name__ == "__main__":
- _rank_size = os.getenv("RANK_SIZE")
- if _rank_size is not None and int(_rank_size) > 1:
- train_paralle(args.data_path)
- else:
- train_single(args.data_path)
|