|
- #!/bin/bash
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- echo "=============================================================================================================="
- echo "Please run the scipt as: "
- echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE MINDRECORD_DIR IMAGE_DIR ANNO_PATH MINDSPORE_HCCL_CONFIG_PATH"
- echo "for example: sh run_distribute_train.sh 8 100 /data/Mindrecord_train /data /data/train.txt /data/hccl.json"
- echo "It is better to use absolute path."
- echo "The learning rate is 0.005 as default, if you want other lr, please change the value in this script."
- echo "=============================================================================================================="
-
- EPOCH_SIZE=$2
- MINDRECORD_DIR=$3
- IMAGE_DIR=$4
- ANNO_PATH=$5
-
- # Before start distribute train, first create mindrecord files.
- python train.py --only_create_dataset=1 --mindrecord_dir=$MINDRECORD_DIR --image_dir=$IMAGE_DIR \
- --anno_path=$ANNO_PATH
-
- echo "After running the scipt, the network runs in the background. The log will be generated in LOGx/log.txt"
-
- export MINDSPORE_HCCL_CONFIG_PATH=$6
- export RANK_SIZE=$1
-
- for((i=0;i<RANK_SIZE;i++))
- do
- export DEVICE_ID=$i
-
- start=`expr $i \* 12`
- end=`expr $start \+ 11`
- cmdopt=$start"-"$end
-
- rm -rf LOG$i
- mkdir ./LOG$i
- cp *.py ./LOG$i
- cd ./LOG$i || exit
- export RANK_ID=$i
- echo "start training for rank $i, device $DEVICE_ID"
- env > env.log
- taskset -c $cmdopt python ../train.py \
- --distribute=1 \
- --lr=0.005 \
- --device_num=$RANK_SIZE \
- --device_id=$DEVICE_ID \
- --mindrecord_dir=$MINDRECORD_DIR \
- --image_dir=$IMAGE_DIR \
- --epoch_size=$EPOCH_SIZE \
- --anno_path=$ANNO_PATH > log.txt 2>&1 &
- cd ../
- done
|