|
- /**
- * This is the C++ adaptation and derivative work of Myia (https://github.com/mila-iqia/myia/).
- *
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "pipeline/jit/pipeline.h"
-
- #include <sstream>
- #include <map>
- #include <unordered_map>
- #include <cstdlib>
- #include <algorithm>
- #include <iomanip>
-
- #include "ir/param_info.h"
- #include "pipeline/jit/pass.h"
- #include "pipeline/jit/parse/data_converter.h"
- #include "frontend/optimizer/ad/dfunctor.h"
- #include "debug/anf_ir_dump.h"
- #include "debug/dump_proto.h"
- #include "debug/anf_ir_utils.h"
- #include "utils/config_manager.h"
- #include "utils/convert_utils.h"
- #include "utils/convert_utils_py.h"
- #include "utils/context/context_extends.h"
- #include "vm/segment_runner.h"
- #include "frontend/parallel/context.h"
- #include "frontend/parallel/graph_util/get_parallel_info.h"
- #include "runtime/device/kernel_runtime_manager.h"
- #include "backend/session/executor_manager.h"
- #include "debug/trace.h"
- #include "debug/draw.h"
- #include "pipeline/pynative/pynative_execute.h"
- #include "frontend/optimizer/py_pass_manager.h"
- #include "pybind_api/pybind_patch.h"
- #include "utils/shape_utils.h"
- #include "utils/info.h"
- #include "load_mindir/load_model.h"
- #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
- #include "ps/constants.h"
- #include "ps/util.h"
- #include "ps/worker.h"
- #include "ps/ps_cache/ps_data/ps_data_prefetch.h"
- #include "ps/ps_cache/ps_cache_manager.h"
- #endif
-
- #if (ENABLE_GE || ENABLE_D)
- #include "pipeline/jit/pipeline_ge.h"
- #include "transform/graph_ir/convert.h"
- #include "transform/graph_ir/df_graph_manager.h"
- #include "transform/graph_ir/op_adapter_map.h"
- #include "runtime/device/ascend/profiling/profiling_manager.h"
- #endif
- #ifdef ENABLE_DUMP_IR
- #include "debug/rdr/running_data_recorder.h"
- #include "debug/rdr/recorder_manager.h"
- #endif
-
- namespace mindspore {
- // namespace to support intermediate representation definition
- namespace pipeline {
- using Tensor = mindspore::tensor::Tensor;
- using MetaTensor = mindspore::tensor::MetaTensor;
- using TensorOrderMap = std::map<std::string, std::shared_ptr<Tensor>>;
- using mindspore::abstract::AbstractTensor;
- using mindspore::abstract::AbstractTensorPtr;
- using mindspore::abstract::AbstractTuple;
- using mindspore::abstract::AbstractTuplePtr;
-
- #if (ENABLE_D)
- using mindspore::device::ascend::ProfilingManager;
- #endif
-
- const char IR_TYPE_ANF[] = "anf_ir";
- const char IR_TYPE_ONNX[] = "onnx_ir";
- const char IR_TYPE_MINDIR[] = "mind_ir";
-
- ExecutorPyPtr ExecutorPy::executor_ = nullptr;
- std::mutex ExecutorPy::instance_lock_;
- bool ExecutorPy::debugger_terminate_ = false;
-
- std::unordered_map<abstract::AbstractBasePtrList, int64_t, abstract::AbstractBasePtrListHasher,
- abstract::AbstractBasePtrListEqual>
- g_args_cache;
-
- namespace {
- std::string GetBaseNameForIR(int64_t stage_idx, const std::string &action_name) {
- std::ostringstream oss;
- oss << std::setfill('0') << std::setw(2) << stage_idx << "_" << action_name;
- return oss.str();
- }
-
- AbstractBasePtr ArgsToAbstract(const ValuePtr &value) {
- MS_EXCEPTION_IF_NULL(value);
- bool broaden = value->isa<MetaTensor>() ||
- (MsContext::GetInstance()->get_param<bool>(MS_CTX_GRAD_FOR_SCALAR) && value->isa<Scalar>());
- return abstract::FromValue(value, broaden);
- }
-
- bool CheckArgValid(const py::handle &arg) {
- if (py::isinstance<py::list>(arg) || py::isinstance<py::tuple>(arg)) {
- auto vector_arg = py::cast<py::list>(arg);
- return std::all_of(vector_arg.begin(), vector_arg.end(), CheckArgValid);
- }
-
- if (py::isinstance<py::dict>(arg)) {
- auto dict_arg = py::cast<py::dict>(arg);
- return std::all_of(dict_arg.begin(), dict_arg.end(), [](const auto &pair) { return CheckArgValid(pair.second); });
- }
-
- return py::isinstance<py::int_>(arg) || py::isinstance<py::float_>(arg) || py::isinstance<Number>(arg) ||
- (py::isinstance<Tensor>(arg) && !py::hasattr(arg, "__parameter__"));
- }
-
- void CheckArgsValid(const py::tuple &args) {
- for (size_t i = 0; i < args.size(); i++) {
- if (!CheckArgValid(args[i])) {
- MS_EXCEPTION(TypeError)
- << "The inputs types of the outermost network support bool, int, float, tensor, "
- "mstype.Number(mstype.bool, mstype.int, mstype.float, mstype.uint), "
- "and tuple or list containing only these types, and dict whose values are these types, but got "
- << i << "th arg is " << py::str(args[i]);
- }
- }
- }
-
- std::string GetCompileExceptionInfo() {
- std::ostringstream oss;
- trace::TraceGraphEval();
- trace::GetEvalStackInfo(oss);
- if (oss.str().empty()) {
- DebugInfoPtr debug_info = TraceManager::GetParseOrResolveDebugInfo();
- if (debug_info != nullptr) {
- oss << "\n\n# " << trace::GetDebugInfo(debug_info);
- }
- }
- return oss.str();
- }
-
- void SetGpuLoopSink(const ResourcePtr &resource_) {
- auto func_graph = resource_->func_graph();
- if (func_graph != nullptr && func_graph->manager() != nullptr) {
- auto manager = func_graph->manager();
- size_t graph_nums = manager->func_graphs().size();
- int64_t sinksize = ConfigManager::GetInstance().iter_num();
- if (graph_nums == 1) {
- resource_->set_gpu_loopsink(true, sinksize);
- } else {
- resource_->set_gpu_loopsink(false, sinksize);
- }
- MS_LOG(INFO) << "Change gpu_loopsink_flag_ to " << resource_->gpu_loopsink_flag() << ", set loopsink size to "
- << sinksize;
- }
- }
- } // namespace
-
- py::tuple GenerateKey(const std::string &name, const std::unordered_map<std::string, py::object> &defaults) {
- MS_LOG(DEBUG) << "GenerateKey args size:" << defaults.size();
- abstract::AbstractBasePtrList args_spec;
-
- for (const auto &arg : defaults) {
- if (py::isinstance<py::module>(arg.second)) {
- MS_LOG(EXCEPTION) << "GenerateKey failed, argument input should not be py::module";
- }
- ValuePtr converted = nullptr;
- if (!parse::ConvertData(arg.second, &converted)) {
- MS_LOG(EXCEPTION) << "GenerateKey convert arg failed";
- }
- args_spec.push_back(ArgsToAbstract(converted));
- }
- if (g_args_cache.count(args_spec) == 0) {
- static int64_t key = 0;
- MS_LOG(INFO) << "Start new args and compile key:" << key;
- g_args_cache[args_spec] = key++;
- }
- auto argSpec = py::tuple(2);
- argSpec[0] = name;
- argSpec[1] = g_args_cache[args_spec];
- return argSpec;
- }
-
- py::bool_ VerifyInputSignature(const py::list &input_signature, const py::tuple &inputs) {
- MS_LOG(DEBUG) << "Verify args size:" << inputs.size();
- if (inputs.size() != input_signature.size()) {
- MS_LOG(ERROR) << "Signature size not equal to args size";
- return false;
- }
-
- size_t count = 0;
- for (auto arg_obj : inputs) {
- if (py::isinstance<Tensor>(arg_obj)) {
- MS_LOG(DEBUG) << "Verify Tensor";
- auto m_tensor = arg_obj.cast<std::shared_ptr<Tensor>>();
- if (m_tensor == nullptr) {
- MS_LOG(ERROR) << "Verify Tensor error, get ptr is null";
- return false;
- }
- auto sig = input_signature[count].cast<std::shared_ptr<MetaTensor>>();
- ShapeVector sig_shape = sig->shape();
- TypePtr sig_type = sig->Dtype();
-
- ShapeVector tensor_shape = m_tensor->shape_c();
- if (tensor_shape != sig_shape) {
- MS_LOG(ERROR) << "Python input shape is incompatible with input_signature";
- return false;
- }
-
- if (*m_tensor->Dtype() != *sig_type) {
- MS_LOG(ERROR) << "Python input type(" << m_tensor->Dtype()->ToString() << ") incompatible with input_signature("
- << sig_type->ToString() << ")";
- return false;
- }
- }
- count++;
- }
-
- return true;
- }
-
- ExecutorPy::ExecutorPy() {}
-
- ResourcePtr ExecutorPy::GetResource(const std::string &phase) {
- MS_LOG(DEBUG) << "Phase size:" << info_.size();
- if (info_.count(phase) == 0) {
- return nullptr;
- }
- return info_[phase]->resource;
- }
-
- FuncGraphPtr ExecutorPy::GetFuncGraph(const std::string &phase) {
- if (info_.count(phase) == 0) {
- MS_LOG(EXCEPTION) << "No phase in executor:" << GetPhasePrefix(phase);
- }
- return info_[phase]->func_graph;
- }
-
- compile::VmEvalFuncPtr ExecutorPy::GetVmEvalFunc(const std::string &phase) {
- ResourcePtr res = GetResource(phase);
- MS_EXCEPTION_IF_NULL(res);
- if (res->results().find(kOutput) != res->results().end() && res->results()[kOutput].is<compile::VmEvalFuncPtr>()) {
- return res->results()[kOutput].cast<compile::VmEvalFuncPtr>();
- }
- MS_LOG(ERROR) << "GetVmEvalFunc vm model can't find kOutput:" << kOutput;
- return nullptr;
- }
-
- bool ExecutorPy::HasCompiled(const std::string &phase) const {
- if (info_.count(phase) == 0) {
- return false;
- }
- return true;
- }
-
- py::bytes ExecutorPy::GetFuncGraphProto(const std::string &phase, const std::string &ir_type) {
- FuncGraphPtr fg_ptr = GetFuncGraph(phase);
- if (fg_ptr == nullptr) {
- for (auto &item : info_) {
- MS_LOG(DEBUG) << "Phase key is: " << item.first;
- }
- MS_LOG(EXCEPTION) << "Can not find func graph " << phase;
- }
-
- if (ir_type == IR_TYPE_ANF) {
- std::string proto_str = GetFuncGraphProtoString(fg_ptr);
- if (proto_str.empty()) {
- MS_LOG(EXCEPTION) << "Export ANF format model failed.";
- }
- return proto_str;
- }
-
- if (ir_type == IR_TYPE_ONNX) {
- std::string proto_str = GetOnnxProtoString(fg_ptr);
- if (proto_str.empty()) {
- MS_LOG(EXCEPTION) << "Export ONNX format model failed.";
- }
- return proto_str;
- }
-
- if (ir_type == IR_TYPE_MINDIR) {
- std::string proto_str = GetBinaryProtoString(fg_ptr);
- if (proto_str.empty()) {
- MS_LOG(EXCEPTION) << "Export MINDIR format model failed.";
- }
- return proto_str;
- }
-
- MS_LOG(EXCEPTION) << "Unknown ir type: " << ir_type;
- }
-
- py::dict ExecutorPy::GetParameterLayout(const std::string &phase) {
- MS_LOG(DEBUG) << "GetParameterLayout!";
- std::string layout_graph = phase + kStepParallelGraph;
- auto graph = GetFuncGraph(layout_graph);
- return mindspore::parallel::GetParameterLayout(graph);
- }
-
- py::dict ExecutorPy::GetCNodeStrategy(const std::string &phase) {
- MS_LOG(DEBUG) << "GetCNodeStrategy!";
- return stra_dict_[phase];
- }
-
- py::list ExecutorPy::GetParallelParameterNameList(const std::string &phase) {
- std::string param_graph = phase + kStepParallelGraph;
- auto graph = GetFuncGraph(param_graph);
- return mindspore::parallel::GetParallelParameterNameList(graph);
- }
-
- void ExecutorPy::SetCNodeStrategy(const std::string &name, const parallel::Strategys &strategy) {
- MS_LOG(DEBUG) << "SetCNodeStrategy!";
- stra_dict_[phase_][py::str(name)] = strategy;
- }
-
- size_t ExecutorPy::GetNumOpsInfo(const std::string &phase) {
- MS_LOG(DEBUG) << "GetNumOpsInfo!";
- return phase_to_num_op_info_[phase];
- }
-
- void ExecutorPy::SetNumOpsInfo(size_t num_ops) {
- MS_LOG(DEBUG) << "SetNumOpsInfo!";
- phase_to_num_op_info_[phase_] = num_ops;
- }
-
- py::dict ExecutorPy::GetAllreduceFusion(const std::string &phase) {
- MS_LOG(INFO) << "GetAllreduceFusion!";
- auto graph = GetFuncGraph(phase);
- return mindspore::parallel::GetAllreduceFusion(graph);
- }
-
- void ExecutorPy::DelNetRes(const std::string &id) {
- #ifdef ENABLE_GE
- FinalizeBackend();
- #else
- ConfigManager::GetInstance().ResetIterNum();
- #endif
- if (executor_ != nullptr) {
- bool flag = false;
- auto tmp_info = info_;
- for (auto &item : tmp_info) {
- if (item.first.find(id) != string::npos) {
- MS_LOG(DEBUG) << "Delete network res:" << item.first;
- item.second = nullptr;
- (void)info_.erase(item.first);
- flag = true;
- }
- }
-
- MS_LOG(DEBUG) << "Delete flag:" << flag;
- #ifdef ENABLE_GE
- if (flag && info_.size() == 0) {
- // because Ge only support one Session exist at the same time ,so we delete the old one
- transform::DfGraphManager::GetInstance().DeleteGraphRunner();
- transform::DfGraphManager::GetInstance().EraseAnfGraph();
- transform::DfGraphManager::GetInstance().DeleteGeSession();
- }
- #endif
- }
- }
-
- void ExecutorPy::ClearRes() {
- MS_LOG(INFO) << "Clean executor resource!";
- Resource::mem_cleaner().ClearPrimitivePyPythonObj();
- #ifdef ENABLE_DUMP_IR
- mindspore::RDR::ClearAll();
- #endif
- executor_ = nullptr;
- }
-
- ExecutorPy::~ExecutorPy() {
- MS_LOG(INFO) << "Release Executor!";
- ConfigManager::GetInstance().ResetConfig();
- }
-
- void ExecutorPy::GetWeightInfo(const CNodePtr &root_node, const AnfNodePtr &weight_node,
- std::map<std::string, std::pair<PrimitivePyPtr, std::string>> *fake_quant_table) {
- std::string weight_name;
- auto x = root_node->input(1);
- if (IsPrimitiveCNode(weight_node, prim::kPrimLoad)) {
- weight_name = weight_node->cast<CNodePtr>()->input(1)->cast<ParameterPtr>()->name();
- } else {
- weight_name = weight_node->cast<ParameterPtr>()->name();
- }
- // find the fakequant from input
- int64_t count = 0;
- const int64_t max_depth = 5;
- CNodePtr cnode = nullptr;
- auto is_quant_cnode = [](const AnfNodePtr &node) {
- return IsPrimitiveCNode(node, prim::kPrimFakeQuantPerLayer) ||
- IsPrimitiveCNode(node, prim::kPrimFakeQuantPerChannel);
- };
- while (!is_quant_cnode(x)) {
- if (count >= max_depth) {
- break;
- }
- cnode = x->cast<CNodePtr>();
- if (cnode == nullptr || cnode->size() <= 1) {
- break;
- }
- x = cnode->input(1);
- count += 1;
- }
- if (x->isa<Parameter>() || IsPrimitiveCNode(x, prim::kPrimLoad)) {
- (*fake_quant_table)[weight_name] = std::make_pair(nullptr, "input");
- }
- // get the fakequant parameter minq's name
- if (!is_quant_cnode(x)) {
- return;
- }
- cnode = x->cast<CNodePtr>();
- if (cnode == nullptr || IsPrimitiveCNode(cnode, prim::kPrimLoad) || cnode->size() != 4) {
- return;
- }
- auto fakequant_min_node = cnode->input(2);
- if (!fakequant_min_node->isa<Parameter>() && !IsPrimitiveCNode(fakequant_min_node, prim::kPrimLoad)) {
- return;
- }
- std::string fakequant_min_node_name;
- if (IsPrimitiveCNode(fakequant_min_node, prim::kPrimLoad)) {
- fakequant_min_node_name = fakequant_min_node->cast<CNodePtr>()->input(1)->cast<ParameterPtr>()->name();
- } else {
- fakequant_min_node_name = fakequant_min_node->cast<ParameterPtr>()->name();
- }
- auto quant_op_value = cnode->input(0)->cast<ValueNodePtr>()->value();
- if (!quant_op_value->isa<PrimitivePy>()) {
- return;
- }
- auto quant_op = quant_op_value->cast<PrimitivePyPtr>();
- (*fake_quant_table)[weight_name] = std::make_pair(quant_op, fakequant_min_node_name);
- }
-
- std::map<std::string, std::pair<PrimitivePyPtr, std::string>> ExecutorPy::FetchInfoForQuantExport(
- const std::string &phase_s) {
- FuncGraphPtr func_graph = info_[phase_s]->resource->func_graph();
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_LOG(DEBUG) << "FetchInfoForQuantExport func graph(" << func_graph->ToString() << ") phase(" << phase_s << ")!";
- std::map<std::string, std::pair<PrimitivePyPtr, std::string>> fake_quant_table;
- auto filter = [](const AnfNodePtr &node) {
- return !(IsPrimitiveCNode(node, prim::kPrimConv2D) || IsPrimitiveCNode(node, prim::kPrimMatMul) ||
- IsPrimitiveCNode(node, prim::kPrimDepthwiseConv2dNative));
- };
- std::vector<AnfNodePtr> nodes = DeepScopedGraphSearchWithFilter(func_graph->get_return(), AlwaysInclude, filter);
- auto is_quant_cnode = [](const AnfNodePtr &node) {
- return IsPrimitiveCNode(node, prim::kPrimFakeQuantPerLayer) ||
- IsPrimitiveCNode(node, prim::kPrimFakeQuantPerChannel);
- };
- for (const auto &node : nodes) {
- auto root_node = node->cast<CNodePtr>();
- if (root_node == nullptr || root_node->size() != 3) {
- continue;
- }
- auto weight = root_node->input(2);
- if (!is_quant_cnode(weight)) {
- continue;
- }
- // get parameter weight's name
- auto cnode = weight->cast<CNodePtr>();
- auto weight_node = cnode->input(2);
- if (!weight_node->isa<Parameter>() && !IsPrimitiveCNode(weight_node, prim::kPrimLoad)) {
- continue;
- }
- GetWeightInfo(root_node, weight_node, &fake_quant_table);
- }
-
- return fake_quant_table;
- }
-
- void ExecutorPy::SaveCompiledGraph(const std::string &phase_s) {
- // save the graph to ExecutorPy
- FuncGraphPtr func_graph = info_[phase_s]->resource->func_graph();
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_EXCEPTION_IF_NULL(parallel::ParallelContext::GetInstance());
- std::string parallel_mode = parallel::ParallelContext::GetInstance()->parallel_mode();
-
- MS_LOG(INFO) << "Save compiled func graph(" << func_graph->ToString() << ") phase(" << phase_s << ")!";
- info_[phase_s]->func_graph = func_graph;
- if ((func_graph != nullptr) && func_graph->has_flag(parallel::AUTO_PARALLEL) &&
- ((parallel_mode == parallel::AUTO_PARALLEL) || (parallel_mode == parallel::SEMI_AUTO_PARALLEL))) {
- MS_LOG(DEBUG) << "Save model parallel parameter layout graph!";
- func_graph = info_[phase_s]->resource->results()[kStepParallelGraph].cast<FuncGraphPtr>();
- ExecutorInfoPtr executor_info = std::make_shared<ExecutorInfo>();
- std::string layout_graph = phase_s + kStepParallelGraph;
- executor_info->func_graph = func_graph;
- info_[layout_graph] = executor_info;
- } else {
- MS_LOG(DEBUG) << "Save model parallel parameter layout graph null!";
- }
- MS_LOG(INFO) << "End save compiled func graph!";
- }
-
- void ExecutorPy::GetGeBackendPolicy() const {
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- std::string backend = ms_context->backend_policy();
- if (backend != "ge") {
- MS_LOG(EXCEPTION) << backend << " backend policy is not supported under ge backend!";
- }
- }
-
- bool IsPhaseExportAir(const std::string &phase_s) {
- auto phase_to_export = "export.air";
- return phase_s.rfind(phase_to_export) != std::string::npos;
- }
-
- std::vector<ActionItem> GetPipeline(const ResourcePtr &resource, const std::string &phase_s, bool use_vm) {
- bool is_air = IsPhaseExportAir(phase_s);
-
- std::string backend = MsContext::GetInstance()->backend_policy();
-
- #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
- if (ps::PSContext::instance()->is_server()) {
- resource->results()[kBackend] = compile::CreateBackend();
- return PServerPipeline();
- }
- if (ps::PSContext::instance()->is_scheduler()) {
- return PSchedulerPipeline();
- }
- #endif
-
- if (use_vm && backend != "ge" && !is_air) {
- // Create backend and session
- auto backend_ptr = compile::CreateBackend();
- // Connect session to debugger
- backend_ptr->SetDebugger();
- resource->results()[kBackend] = backend_ptr;
- return VmPipeline();
- }
- return GePipeline();
- }
-
- bool ExecutorPy::CompileInner(const py::object &obj, const py::tuple &args, const py::object &phase, bool use_vm) {
- MS_LOG(DEBUG) << "Start ExecutorPy compile!";
- if ((!py::isinstance<py::str>(phase))) {
- MS_LOG(ERROR) << "Arg phase must be string.";
- return false;
- }
- // check the function or net is valid
- if (py::isinstance<py::none>(obj)) {
- MS_LOG(ERROR) << "Find error: parse obj is None.";
- return false;
- }
- // check the args of function or net is valid
- CheckArgsValid(args);
- #ifdef ENABLE_GE
- GetGeBackendPolicy();
- #endif
- ExecutorInfoPtr executor_info = std::make_shared<ExecutorInfo>();
- auto phase_s = py::cast<std::string>(phase);
- phase_ = phase_s;
- MS_LOG(INFO) << "ExecutorPy compile phase:" << phase_s << "!";
- ResourcePtr resource = std::make_shared<Resource>(obj);
-
- auto p_actions = GetPipeline(resource, phase_s, use_vm);
- std::shared_ptr<Pipeline> pip = std::make_shared<Pipeline>(resource, FilterActions(p_actions, phase_s));
-
- // get the parameters items and add the value to args_spec
- abstract::AbstractBasePtrList args_spec;
- std::size_t size = args.size();
- for (std::size_t i = 0; i < size; i++) {
- ValuePtr converted = nullptr;
- bool succ = parse::ConvertData(args[i], &converted);
- if (!succ) {
- MS_LOG(EXCEPTION) << "Args convert error";
- }
- args_spec.push_back(ArgsToAbstract(converted));
- }
-
- resource->set_args_spec(args_spec);
- executor_info->arg_list_size = size;
- executor_info->resource = resource;
- info_[phase_s] = executor_info;
- pip->Run();
-
- // save the run graph func to MsPipeLine
- SaveCompiledGraph(phase_s);
-
- opt::python_pass::PyPassManager::GetInstance()->ClearPipelineRes();
- // Reclaim all resource used by optimizer;
- ReclaimOptimizer();
- resource->Clean();
-
- MS_LOG(INFO) << "End ExecutorPy compile!";
- return true;
- }
-
- std::vector<ActionItem> ExecutorPy::FilterActions(const std::vector<ActionItem> &actions, const std::string &phase) {
- // filter action after validate when 'export'.
- if (GetPhasePrefix(phase).rfind("export", 0) == std::string::npos) {
- return actions;
- }
- MS_LOG(INFO) << "Phase is '" << phase << "', filter out actions after stage 'validate'";
- std::vector<ActionItem> filtered_actions;
- for (const auto &item : actions) {
- filtered_actions.emplace_back(item);
- if (item.first == "validate") {
- break;
- }
- }
- return filtered_actions;
- }
-
- void ExecutorPy::ReleaseResource(const py::object &phase) {
- ResourcePtr res = GetResource(py::cast<std::string>(phase));
- if (res != nullptr) {
- res->Clean();
- }
- // Reclaim all resource used by optimizer;
- ReclaimOptimizer();
- }
-
- static std::string PrintArgs(const py::tuple &args) {
- py::print(args);
- return "";
- }
-
- bool ExecutorPy::Compile(const py::object &obj, const py::tuple &args, const py::object &phase, bool use_vm) {
- bool ret_value = false;
- try {
- MS_LOG(DEBUG) << PrintArgs(args);
- ret_value = CompileInner(obj, args, phase, use_vm);
- } catch (const py::error_already_set &ex) {
- // print function call stack info before release
- std::string exception_info = GetCompileExceptionInfo();
- if (!exception_info.empty()) {
- MS_LOG(ERROR) << exception_info;
- }
- ReleaseResource(phase);
-
- // re-throw this exception to Python interpreter to handle it
- throw(py::error_already_set(ex));
- } catch (const py::type_error &ex) {
- ReleaseResource(phase);
- throw py::type_error(ex);
- } catch (const py::value_error &ex) {
- ReleaseResource(phase);
- throw py::value_error(ex);
- } catch (const py::index_error &ex) {
- ReleaseResource(phase);
- throw py::index_error(ex);
- } catch (const py::key_error &ex) {
- ReleaseResource(phase);
- throw py::key_error(ex);
- } catch (const py::attribute_error &ex) {
- ReleaseResource(phase);
- throw py::attribute_error(ex);
- } catch (const py::name_error &ex) {
- ReleaseResource(phase);
- throw py::name_error(ex);
- } catch (const std::exception &ex) {
- ReleaseResource(phase);
- // re-throw this exception to Python interpreter to handle it
- throw(std::runtime_error(ex.what()));
- } catch (...) {
- ReleaseResource(phase);
- std::string exName(abi::__cxa_current_exception_type()->name());
- MS_LOG(EXCEPTION) << "Error occurred when compile graph. Exception name: " << exName;
- }
- return ret_value;
- }
-
- #ifdef ENABLE_LOAD_ANF_IR
- // get MindSpore Intermediate Representation File
- std::string GetMsIrFile(void) {
- std::string file;
- const char *path = getenv("MS_IR_FILE");
- if (path == nullptr) {
- return file;
- }
-
- char real_path[PATH_MAX] = {0};
- if (realpath(path, real_path) == nullptr) {
- MS_LOG(ERROR) << "MS IR path error, " << path;
- return file;
- }
- file = real_path;
- return file;
- }
-
- void RunPipelineAction(const ActionItem &action, pipeline::ResourcePtr resource, bool *result) {
- MS_EXCEPTION_IF_NULL(resource);
- MS_EXCEPTION_IF_NULL(result);
-
- std::string ir_file = GetMsIrFile();
- (void)parse::python_adapter::set_python_scoped();
- if (ir_file.empty()) {
- *result = action.second(resource);
- return;
- }
-
- // when in loading anf ir mode, action `parse` do nothing
- if (action.first == "parse") {
- return;
- }
-
- // load MindSpore IR from file
- if (action.first == "symbol_resolve") {
- MS_LOG(DEBUG) << action.first << " read ir file: " << ir_file;
- std::vector<FuncGraphPtr> graphs = ImportIR(ir_file);
- if (graphs.size() == 0) {
- MS_LOG(EXCEPTION) << action.first << " read ir file " << ir_file << " failed as no graph found";
- }
- auto manager = resource->manager();
- MS_EXCEPTION_IF_NULL(manager);
- for (auto &graph : graphs) {
- manager->AddFuncGraph(graph);
- }
- resource->set_func_graph(graphs[0]);
- return;
- }
-
- // do normal action when not in `parse` and `symbol_resolve` stage
- *result = action.second(resource);
- }
- #endif
-
- void Pipeline::Run() {
- MS_LOG(INFO) << "Pipeline run";
- MS_EXCEPTION_IF_NULL(resource_);
- FuncGraphPtr user_graph = nullptr;
-
- WITH(MsProfile::GetProfile())[&user_graph, this]() {
- size_t i = 0;
- for (auto &action : actions_) {
- #ifdef ENABLE_TIMELINE
- DumpTime &dump_time = DumpTime::GetInstance();
- dump_time.Record(action.first, GetTime(), true);
- #endif
- bool result = true;
- WITH(MsProfile::GetProfile()->Step(action.first))[&result, &action, this]() {
- MS_LOG(DEBUG) << "Action " << action.first << " start ...";
- #ifdef ENABLE_LOAD_ANF_IR
- RunPipelineAction(action, resource_, &result);
- #else
- result = action.second(resource_);
- #endif
- MS_LOG(DEBUG) << "Action " << action.first << " end.";
- };
- if (action.first == "task_emit") {
- SetGpuLoopSink(resource_);
- }
- if (!result) {
- MS_LOG(EXCEPTION) << "Pipeline running to end, failed in step:" << action.first;
- }
-
- FuncGraphPtr graph = resource_->func_graph();
- #ifdef ENABLE_DUMP_IR
- if (mindspore::RecorderManager::Instance().RdrEnable()) {
- MS_LOG(INFO) << "Recording FuncGraph in pipeline using RDR.";
- std::string name = GetBaseNameForIR(i, action.first);
- if (graph != nullptr) {
- auto graph_clone = BasicClone(graph);
- if (graph_clone != nullptr) {
- DumpGraphParams dump_params = {false, static_cast<int>(kTopStack)};
- if (i == actions_.size()) {
- dump_params.dump_mode = static_cast<int>(kWholeStack);
- }
- mindspore::RDR::RecordAnfGraph(SUBMODULE_ID, name, graph_clone, dump_params, ".ir");
- } else {
- MS_LOG(WARNING) << "Clone FuncGraph failed in pipeline, no FuncGraph recording in RDR.";
- }
- } else {
- MS_LOG(WARNING) << "Pipeline Resource has no FuncGraph, no FuncGraph recording in RDR";
- }
- MS_LOG(INFO) << "Recording FuncGraph in pipeline end.";
- }
- #endif
-
- if (MsContext::GetInstance()->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG) && graph != nullptr) {
- user_graph = graph;
- std::string base_name = GetBaseNameForIR(i, action.first);
-
- // generate IR file in dot format, which can be converted to svg file using graphviz dot command
- draw::Draw(base_name + ".dot", graph);
- // generate IR file in human readable format
- if (i == actions_.size() - 1) {
- DumpIR(base_name + ".ir", graph, false, kWholeStack);
- } else {
- DumpIR(base_name + ".ir", graph, false, kTopStack);
- }
- // generate IR file in a heavily commented format, which can also be reloaded
- ExportIR(base_name + ".dat", std::to_string(i), graph);
- }
- i++;
- #ifdef ENABLE_TIMELINE
- dump_time.Record(action.first, GetTime(), false);
- #endif
- }
- };
- #ifdef ENABLE_PROFILE
- MsProfile::Print();
- MsProfile::Reset();
- #endif
-
- if (MsContext::GetInstance()->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG) && (user_graph != nullptr)) {
- draw::DrawUserFuncGraph("ModelDigraph.dot", user_graph);
- }
- MS_LOG(INFO) << "End";
- }
-
- void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *const arg_list) {
- MS_EXCEPTION_IF_NULL(arg_list);
- std::size_t size = args.size();
- bool arg_list_inited = !arg_list->empty();
- for (std::size_t i = 0; i < size; i++) {
- py::object arg = args[i];
- auto ms_context = MsContext::GetInstance();
- if (ms_context->backend_policy() == kMsConvert && py::isinstance<py::array>(arg)) {
- MS_LOG(EXCEPTION) << "The " << i << "th arg is numpy array, not tensor.";
- }
- ValuePtr converted = nullptr;
- bool succ = parse::ConvertData(arg, &converted);
- if (!succ) {
- MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
- }
- if (!arg_list_inited) {
- arg_list->push_back(converted);
- continue;
- }
- if (i >= arg_list->size()) {
- MS_LOG(EXCEPTION) << "i:" << i << " output of range:" << arg_list->size();
- }
- (*arg_list)[i] = converted;
- }
-
- MS_EXCEPTION_IF_NULL(res);
- auto graph = res->func_graph();
- MS_EXCEPTION_IF_NULL(graph);
- std::vector<AnfNodePtr> graph_params = graph->parameters();
- std::size_t graph_params_size = graph_params.size();
- if ((*arg_list).size() != graph_params_size) {
- // maybe some default parameter
- for (std::size_t i = (*arg_list).size(); i < graph_params_size; i++) {
- MS_EXCEPTION_IF_NULL(graph_params[i]);
- auto param_ptr = (graph_params[i])->cast<ParameterPtr>();
- if (!param_ptr->has_default()) {
- MS_LOG(EXCEPTION) << "Parameter[" << i << "] has no default param";
- }
- if (!param_ptr->default_param()->isa<Tensor>()) {
- MS_LOG(EXCEPTION) << "Parameter[" << param_ptr->ToString()
- << "] is not initialized, need to call `.init_data()`";
- }
- arg_list->push_back(param_ptr->default_param());
- }
- }
- }
-
- void ExecutorPy::ProcessVmArg(const py::tuple &args, const std::string &phase, VectorRef *const arg_list) {
- ProcessVmArgInner(args, GetResource(phase), arg_list);
- }
-
- void ExecutorPy::TerminateDebugger() {
- if (debugger_terminate_) {
- MS_LOG(INFO) << "Terminate debugger and clear resources!";
- ClearResAtexit();
- exit(1);
- }
- }
-
- py::object ExecutorPy::Run(const py::tuple &args, const py::object &phase) {
- // Mindspore debugger notify main thread to exit after one step, and will not run next step
- TerminateDebugger();
- std::size_t size = args.size();
- if (!py::isinstance<py::str>(phase)) {
- MS_LOG(EXCEPTION) << "Run failed, phase input is not a str";
- }
- auto phase_s = py::cast<std::string>(phase);
- std::string backend = MsContext::GetInstance()->backend_policy();
- #ifdef ENABLE_GE
- if (backend == "ge") {
- return ExecDFGraph(info_, args, phase_s);
- }
- #else
- auto ret_val = std::make_shared<py::object>();
- if (info_.count(phase_s) != 0 && info_[phase_s]->func_graph != nullptr) {
- if (IsGraphOutputValueNodeOrParameter(info_[phase_s]->func_graph->output(), args, ret_val)) {
- // Check the input arg must be Tensor when backend is "ms".
- if (MsContext::GetInstance()->backend_policy() == kMsConvert) {
- for (std::size_t i = 0; i < size; i++) {
- ValuePtr converted = nullptr;
- if (!parse::ConvertData(args[i], &converted)) {
- MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
- }
- }
- }
- return *ret_val;
- }
- }
- if (backend == "ge") {
- // Virtual output constructed for test cases.
- if (!args.empty()) {
- return args[0];
- }
- return args;
- }
- #endif
- auto iter = info_.find(phase_s);
- if (iter == info_.end()) {
- MS_LOG(EXCEPTION) << "No phase in executor:" << GetPhasePrefix(phase_s);
- }
- auto &execute_info = iter->second;
- MS_EXCEPTION_IF_NULL(execute_info);
- if (size > execute_info->arg_list_size) {
- MS_LOG(WARNING) << "The arg num : size = " << size << ". full_arg_size = " << execute_info->arg_list_size;
- }
- ProcessVmArg(args, phase_s, &execute_info->arg_list);
- // Start to run phase.
- compile::VmEvalFuncPtr run = GetVmEvalFunc(phase_s);
- if (run == nullptr) {
- MS_LOG(EXCEPTION) << "Can't find run graph func for " << phase_s;
- }
- // Set loopsink size for each phase.
- bool is_loopsink = info_[phase_s]->resource->gpu_loopsink_flag();
- int64_t sinksize = info_[phase_s]->resource->gpu_loopsink_size();
- ConfigManager::GetInstance().set_gpu_loopsink_size(is_loopsink ? sinksize : 1);
- // If target is not gpu or is loopsink, keep vmloop 1.
- bool g = (MsContext::GetInstance()->get_param<std::string>(MS_CTX_DEVICE_TARGET) == kGPUDevice);
- int64_t vm_loop = (!g || is_loopsink) ? 1 : sinksize;
- MS_LOG(INFO) << "VM loop size " << vm_loop << ", loopsink size " << (is_loopsink ? sinksize : 1);
- py::object ret;
- MS_LOG(DEBUG) << "Eval run" << backend;
- for (int64_t i = 0; i < vm_loop; i++) {
- BaseRef value = (*run)(execute_info->arg_list);
- ret = BaseRefToPyData(value);
- }
- MS_LOG(DEBUG) << "Run end";
- return ret;
- }
-
- FuncGraphPtr ExecutorPy::BuildGraph(const py::dict &init_params, const std::string &phase,
- const py::object &broadcast_params) {
- #if (ENABLE_GE || ENABLE_D)
- return BuildDFGraph(info_, init_params, phase, broadcast_params);
- #else
- return nullptr;
- #endif
- }
-
- void ExecutorPy::UpdataParamNodeDefaultInput(const std::string &phase,
- const std::unordered_map<std::string, tensor::TensorPtr> ¶ms_value) {
- FuncGraphPtr func_graph = info_[phase]->resource->func_graph();
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_LOG(DEBUG) << "UpdataParamNodeDefaultInput for func graph(" << func_graph->ToString() << ") phase(" << phase
- << ")!";
- auto ¶ms = func_graph->parameters();
- for (const auto ¶m : params) {
- MS_EXCEPTION_IF_NULL(param);
- auto param_cast = param->cast<ParameterPtr>();
- MS_EXCEPTION_IF_NULL(param_cast);
- auto iter = params_value.find(param_cast->name());
- if (iter != params_value.end()) {
- param_cast->set_default_param(iter->second);
- }
- }
- }
-
- void ExecutorPy::RunInitGraph(const py::dict &init_params, const std::string &phase) {
- #if ENABLE_GE
- RunGEInitGraph(init_params, phase);
- #endif
- }
-
- void ExecutorPy::PyExePath(const py::object &py_exe_path) {
- if (!py::isinstance<py::str>(py_exe_path)) {
- MS_LOG(EXCEPTION) << "Failed, phase input is not a str";
- }
- auto py_exe_path_s = py::cast<std::string>(py_exe_path);
- auto ms_context = MsContext::GetInstance();
- ms_context->set_param<std::string>(MS_CTX_PYTHON_EXE_PATH, py_exe_path_s);
- }
-
- bool InitExecDataset(const std::string &queue_name, int64_t iter_num, int64_t batch_size,
- const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
- const std::vector<int64_t> &input_indexes, const std::string &phase, bool need_run) {
- std::string name = MsContext::GetInstance()->backend_policy();
- #ifndef NO_DLIB
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (!context::IsTsdOpened(ms_context) || !context::IsGeInited(ms_context)) {
- (void)InitPipeline();
- }
- #endif
- if (iter_num == -1) {
- iter_num = INT32_MAX;
- }
- if (name == kMsConvert || name == kMsVm) {
- return InitExecDatasetVm(queue_name, iter_num, batch_size, types, shapes, input_indexes, need_run);
- }
- #if ENABLE_GE
- return InitExecDatasetGe(queue_name, iter_num, batch_size, types, shapes, input_indexes, phase);
- #else
- std::string backend = MsContext::GetInstance()->backend_policy();
- if (backend == "ge") {
- return true;
- }
- #endif
- return false;
- }
-
- bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batch_size,
- const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
- const std::vector<int64_t> &input_indexes, bool need_run) {
- #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
- if ((ps::PSContext::instance()->is_ps_mode()) && (!ps::PSContext::instance()->is_worker())) {
- return true;
- }
- #endif
- MS_LOG(INFO) << "Start InitDataSet Entry";
- ShapeVector int_input_indexes;
- (void)std::transform(input_indexes.begin(), input_indexes.end(), std::back_inserter(int_input_indexes),
- [](int64_t item) { return static_cast<int64_t>(item); });
- std::vector<ShapeVector> int_shapes;
- (void)std::transform(shapes.begin(), shapes.end(), std::back_inserter(int_shapes),
- [](const std::vector<int64_t> &item) {
- ShapeVector vector_item;
- (void)std::transform(item.begin(), item.end(), std::back_inserter(vector_item),
- [](int64_t inner_item) { return static_cast<int64_t>(inner_item); });
- return vector_item;
- });
- auto p_init = std::make_shared<Primitive>("InitDataSetQueue");
- p_init->set_attr("queue_name", MakeValue(queue_name));
- p_init->set_attr("size", MakeValue(static_cast<int64_t>(size)));
- p_init->set_attr("batch_size", MakeValue(static_cast<int64_t>(batch_size)));
- p_init->set_attr("types", MakeValue(types));
- p_init->set_attr("shapes", MakeValue(int_shapes));
- p_init->set_attr("input_indexes", MakeValue(int_input_indexes));
-
- const std::vector<std::string> empty_str_list;
- p_init->set_attr("input_names", MakeValue(empty_str_list));
- p_init->set_attr("output_names", MakeValue(empty_str_list));
-
- FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
- auto app_init = std::make_shared<CNode>(AnfNodePtrList{NewValueNode(p_init)}, func_graph);
- func_graph->set_output(app_init);
- auto manager = MakeManager();
- manager->AddFuncGraph(func_graph);
-
- // AbstractNone indicates there is no output for this apply node.
- auto abstract_none = std::make_shared<abstract::AbstractNone>();
- app_init->set_abstract(abstract_none);
-
- auto backend = compile::CreateBackend();
- MS_EXCEPTION_IF_NULL(backend);
- // The data set graph compiling and running of mindRT.
- if (compile::IsMindRTUsed()) {
- ConfigManager::GetInstance().set_iter_num(size);
- const auto &mindrt_backend = std::dynamic_pointer_cast<compile::MindRTBackend>(backend);
- MS_EXCEPTION_IF_NULL(mindrt_backend);
- auto graph_id = mindrt_backend->CompileGraph({app_init});
- VectorRef args;
- if (need_run) {
- (void)mindrt_backend->RunGraph(graph_id, args);
- }
- return true;
- }
-
- auto convert_fn = backend->convert_fn();
- MS_EXCEPTION_IF_NULL(convert_fn);
- // Convert CNodeList to LinConvertResult.
- ConfigManager::GetInstance().set_iter_num(1);
- auto segment = std::make_shared<GraphSegment>(std::vector<AnfNodePtr>{app_init}, false);
- auto runner = convert_fn(segment, "");
- if (MsContext::GetInstance()->get_param<int>(MS_CTX_EXECUTION_MODE) != kPynativeMode) {
- backend->Link(runner.graph_id);
- }
- ConfigManager::GetInstance().set_iter_num(size);
- // PS cache does not support loop sink.
- #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
- if (ps::PSContext::instance()->is_worker() && ps::PsDataPrefetch::GetInstance().cache_enable()) {
- ps::PsDataPrefetch::GetInstance().CreateDataChannel(queue_name, LongToSize(size));
- ConfigManager::GetInstance().set_iter_num(1);
- }
- #endif
-
- if (!(*runner.run)) {
- // empty function
- MS_LOG(EXCEPTION) << "Backend " << backend->name() << " unsupported tdt dataset.";
- }
-
- // launch init dataset runner without inputs and outputs
- VectorRef args;
- auto fn = runner.run;
- if (need_run) {
- (void)(*fn)(args);
- }
- MS_LOG(DEBUG) << "InitDataSetVm End.";
- return true;
- } // namespace pipeline
-
- void ResetOpId() { mindspore::id_generator::reset_id(); }
-
- void InitHccl() {
- #ifdef ENABLE_GE
- (void)InitPipeline();
- #else
- mindspore::parse::python_adapter::set_python_env_flag(true);
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- uint32_t device_id = ms_context->get_param<uint32_t>(MS_CTX_DEVICE_ID);
- std::string device_name = ms_context->get_param<std::string>(MS_CTX_DEVICE_TARGET);
- ms_context->set_param<bool>(MS_CTX_ENABLE_HCCL, true);
- if (ms_context->backend_policy() == "ms" &&
- ms_context->get_param<std::string>(MS_CTX_DEVICE_TARGET) == kAscendDevice) {
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(device_name, device_id);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->PreInit();
- (void)context::OpenTsd(ms_context);
- if (!runtime_instance->Init()) {
- MS_LOG(EXCEPTION) << "Runtime init failed.";
- }
- } else {
- (void)context::OpenTsd(ms_context);
- }
- #endif
- #if (ENABLE_D)
- if (!ProfilingManager::GetInstance().IsProfiling()) {
- ProfilingManager::GetInstance().SetHcclEnabledBefProfilingEnabled();
- }
- #endif
- }
-
- void FinalizeHccl() {
- #ifdef ENABLE_GE
- (void)FinalizeBackend();
- #else
- session::ExecutorManager::Instance().Clear();
- device::KernelRuntimeManager::Instance().ClearRuntimeResource();
- #endif
- }
-
- void ExportGraph(const std::string &file_name, const std::string &, const std::string &phase) {
- #if (ENABLE_GE || ENABLE_D)
- ExportDFGraph(file_name, phase);
- #else
- MS_EXCEPTION(ValueError) << "Only support export file in 'AIR' format with Ascend backend.";
- #endif
- }
-
- FuncGraphPtr LoadMindIR(const std::string &file_name) { return mindspore::LoadMindIR(file_name); }
-
- void ReleaseGeTsd() {
- auto context_ptr = MsContext::GetInstance();
- if (context_ptr != nullptr) {
- (void)context::FinalizeGe(context_ptr, true);
- (void)context::CloseTsd(context_ptr, true);
- }
- }
-
- void StartUpProfiling() {
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (!ms_context->get_param<bool>(MS_CTX_ENABLE_PROFILING)) {
- return;
- }
- MS_LOG(INFO) << "Startup profiling";
- // Start up profiling before OpenTsd
- uint32_t device_id = ms_context->get_param<uint32_t>(MS_CTX_DEVICE_ID);
- std::string device_name = ms_context->get_param<std::string>(MS_CTX_DEVICE_TARGET);
- if (ms_context->backend_policy() == "ms" &&
- ms_context->get_param<std::string>(MS_CTX_DEVICE_TARGET) == kAscendDevice) {
- auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(device_name, device_id);
- MS_EXCEPTION_IF_NULL(runtime_instance);
- runtime_instance->PreInit();
- }
- }
-
- void InitPipeline() {
- // If previous pipeline exit with exception, memory cleaner's flags maybe unpredictable, so init when a new pipeline
- // start.
- pipeline::Resource::mem_cleaner().Init();
- // set python env flag
- mindspore::parse::python_adapter::set_python_env_flag(true);
- // Startup profiling before open tsd
- StartUpProfiling();
- // open tsd before ge initialize
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (!context::OpenTsd(ms_context)) {
- MS_LOG(EXCEPTION) << "Open tsd failed";
- }
- (void)context::InitGe(ms_context);
- }
-
- void FinalizeBackend() {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- (void)context::FinalizeGe(context_ptr);
- (void)context::CloseTsd(context_ptr);
- }
-
- void ClearResAtexit() {
- MS_LOG(DEBUG) << "Pipeline clear all resource";
- pynative::ClearPyNativeSession();
- session::ClearPythonParasMap();
- #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
- if (ps::PSContext::instance()->is_ps_mode() && ps::PSContext::instance()->is_worker()) {
- if (ps::PsDataPrefetch::GetInstance().cache_enable()) {
- ps::ps_cache_instance.Finalize();
- }
- MS_LOG(INFO) << "ps::worker.Finalize";
- ps::Worker::GetInstance().Finalize();
- }
- #endif
- ad::g_k_prims.clear();
-
- abstract::ClearPrimEvaluatorMap();
- compile::ClearConvertCache();
- pipeline::GetMethodMap().clear();
- pipeline::GetAttrMap().clear();
- pipeline::ExecutorPy::ClearRes();
- pipeline::ReclaimOptimizer();
- pynative::PynativeExecutor::GetInstance()->ClearRes();
- opt::python_pass::PyPassManager::GetInstance()->ClearRes();
- #ifdef ENABLE_GE
- transform::DfGraphManager::GetInstance().ClearGraph();
- transform::OpAdapterMap::get().clear();
- #else
- ConfigManager::GetInstance().ResetIterNum();
- #endif
- session::ExecutorManager::Instance().Clear();
- device::KernelRuntimeManager::Instance().ClearRuntimeResource();
- ReleaseGeTsd();
- parse::python_adapter::ResetPythonScope();
- }
- } // namespace pipeline
- } // namespace mindspore
|