|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """YoloV3 eval."""
- import os
- import argparse
- import datetime
- import time
- import sys
- from collections import defaultdict
-
- import numpy as np
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
-
- from mindspore import Tensor
- from mindspore.train import ParallelMode
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore as ms
-
- from src.yolo import YOLOV3DarkNet53
- from src.logger import get_logger
- from src.yolo_dataset import create_yolo_dataset
- from src.config import ConfigYOLOV3DarkNet53
-
-
- class Redirct:
- def __init__(self):
- self.content = ""
-
- def write(self, content):
- self.content += content
-
- def flush(self):
- self.content = ""
-
-
- class DetectionEngine:
- """Detection engine."""
- def __init__(self, args):
- self.ignore_threshold = args.ignore_threshold
- self.labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
- 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat',
- 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
- 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
- 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
- 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
- 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
- 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
- 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
- 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
- self.num_classes = len(self.labels)
- self.results = {}
- self.file_path = ''
- self.save_prefix = args.outputs_dir
- self.annFile = args.annFile
- self._coco = COCO(self.annFile)
- self._img_ids = list(sorted(self._coco.imgs.keys()))
- self.det_boxes = []
- self.nms_thresh = args.nms_thresh
- self.coco_catIds = self._coco.getCatIds()
-
- def do_nms_for_results(self):
- """Get result boxes."""
- for img_id in self.results:
- for clsi in self.results[img_id]:
- dets = self.results[img_id][clsi]
- dets = np.array(dets)
- keep_index = self._nms(dets, self.nms_thresh)
-
- keep_box = [{'image_id': int(img_id),
- 'category_id': int(clsi),
- 'bbox': list(dets[i][:4].astype(float)),
- 'score': dets[i][4].astype(float)}
- for i in keep_index]
- self.det_boxes.extend(keep_box)
-
- def _nms(self, predicts, threshold):
- """Calculate NMS."""
- # conver xywh -> xmin ymin xmax ymax
- x1 = predicts[:, 0]
- y1 = predicts[:, 1]
- x2 = x1 + predicts[:, 2]
- y2 = y1 + predicts[:, 3]
- scores = predicts[:, 4]
-
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
-
- reserved_boxes = []
- while order.size > 0:
- i = order[0]
- reserved_boxes.append(i)
- max_x1 = np.maximum(x1[i], x1[order[1:]])
- max_y1 = np.maximum(y1[i], y1[order[1:]])
- min_x2 = np.minimum(x2[i], x2[order[1:]])
- min_y2 = np.minimum(y2[i], y2[order[1:]])
-
- intersect_w = np.maximum(0.0, min_x2 - max_x1 + 1)
- intersect_h = np.maximum(0.0, min_y2 - max_y1 + 1)
- intersect_area = intersect_w * intersect_h
- ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area)
-
- indexs = np.where(ovr <= threshold)[0]
- order = order[indexs + 1]
- return reserved_boxes
-
- def write_result(self):
- """Save result to file."""
- import json
- t = datetime.datetime.now().strftime('_%Y_%m_%d_%H_%M_%S')
- try:
- self.file_path = self.save_prefix + '/predict' + t + '.json'
- f = open(self.file_path, 'w')
- json.dump(self.det_boxes, f)
- except IOError as e:
- raise RuntimeError("Unable to open json file to dump. What(): {}".format(str(e)))
- else:
- f.close()
- return self.file_path
-
- def get_eval_result(self):
- """Get eval result."""
- cocoGt = COCO(self.annFile)
- cocoDt = cocoGt.loadRes(self.file_path)
- cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
- cocoEval.evaluate()
- cocoEval.accumulate()
- rdct = Redirct()
- stdout = sys.stdout
- sys.stdout = rdct
- cocoEval.summarize()
- sys.stdout = stdout
- return rdct.content
-
- def detect(self, outputs, batch, image_shape, image_id):
- """Detect boxes."""
- outputs_num = len(outputs)
- # output [|32, 52, 52, 3, 85| ]
- for batch_id in range(batch):
- for out_id in range(outputs_num):
- # 32, 52, 52, 3, 85
- out_item = outputs[out_id]
- # 52, 52, 3, 85
- out_item_single = out_item[batch_id, :]
- # get number of items in one head, [B, gx, gy, anchors, 5+80]
- dimensions = out_item_single.shape[:-1]
- out_num = 1
- for d in dimensions:
- out_num *= d
- ori_w, ori_h = image_shape[batch_id]
- img_id = int(image_id[batch_id])
- x = out_item_single[..., 0] * ori_w
- y = out_item_single[..., 1] * ori_h
- w = out_item_single[..., 2] * ori_w
- h = out_item_single[..., 3] * ori_h
-
- conf = out_item_single[..., 4:5]
- cls_emb = out_item_single[..., 5:]
-
- cls_argmax = np.expand_dims(np.argmax(cls_emb, axis=-1), axis=-1)
- x = x.reshape(-1)
- y = y.reshape(-1)
- w = w.reshape(-1)
- h = h.reshape(-1)
- cls_emb = cls_emb.reshape(-1, 80)
- conf = conf.reshape(-1)
- cls_argmax = cls_argmax.reshape(-1)
-
- x_top_left = x - w / 2.
- y_top_left = y - h / 2.
- # creat all False
- flag = np.random.random(cls_emb.shape) > sys.maxsize
- for i in range(flag.shape[0]):
- c = cls_argmax[i]
- flag[i, c] = True
- confidence = cls_emb[flag] * conf
- for x_lefti, y_lefti, wi, hi, confi, clsi in zip(x_top_left, y_top_left, w, h, confidence, cls_argmax):
- if confi < self.ignore_threshold:
- continue
- if img_id not in self.results:
- self.results[img_id] = defaultdict(list)
- x_lefti = max(0, x_lefti)
- y_lefti = max(0, y_lefti)
- wi = min(wi, ori_w)
- hi = min(hi, ori_h)
- # transform catId to match coco
- coco_clsi = self.coco_catIds[clsi]
- self.results[img_id][coco_clsi].append([x_lefti, y_lefti, wi, hi, confi])
-
-
- def parse_args():
- """Parse arguments."""
- parser = argparse.ArgumentParser('mindspore coco testing')
-
- # device related
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
-
- # dataset related
- parser.add_argument('--data_dir', type=str, default='', help='train data dir')
- parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu')
-
- # network related
- parser.add_argument('--pretrained', default='', type=str, help='model_path, local pretrained model to load')
-
- # logging related
- parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location')
-
- # detect_related
- parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS')
- parser.add_argument('--annFile', type=str, default='', help='path to annotation')
- parser.add_argument('--testing_shape', type=str, default='', help='shape for test ')
- parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes')
-
- args, _ = parser.parse_known_args()
-
- args.data_root = os.path.join(args.data_dir, 'val2014')
- args.annFile = os.path.join(args.data_dir, 'annotations/instances_val2014.json')
-
- return args
-
-
- def conver_testing_shape(args):
- """Convert testing shape to list."""
- testing_shape = [int(args.testing_shape), int(args.testing_shape)]
- return testing_shape
-
-
- def test():
- """The function of eval."""
- start_time = time.time()
- args = parse_args()
-
- devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=True, device_id=devid)
-
- # logger
- args.outputs_dir = os.path.join(args.log_path,
- datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
- rank_id = int(os.environ.get('RANK_ID')) if os.environ.get('RANK_ID') else 0
- args.logger = get_logger(args.outputs_dir, rank_id)
-
- context.reset_auto_parallel_context()
- parallel_mode = ParallelMode.STAND_ALONE
- context.set_auto_parallel_context(parallel_mode=parallel_mode, mirror_mean=True, device_num=1)
-
- args.logger.info('Creating Network....')
- network = YOLOV3DarkNet53(is_training=False)
-
- args.logger.info(args.pretrained)
- if os.path.isfile(args.pretrained):
- param_dict = load_checkpoint(args.pretrained)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('yolo_network.'):
- param_dict_new[key[13:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- args.logger.info('load_model {} success'.format(args.pretrained))
- else:
- args.logger.info('{} not exists or not a pre-trained file'.format(args.pretrained))
- assert FileNotFoundError('{} not exists or not a pre-trained file'.format(args.pretrained))
- exit(1)
-
- data_root = args.data_root
- ann_file = args.annFile
-
- config = ConfigYOLOV3DarkNet53()
- if args.testing_shape:
- config.test_img_shape = conver_testing_shape(args)
-
- ds, data_size = create_yolo_dataset(data_root, ann_file, is_training=False, batch_size=args.per_batch_size,
- max_epoch=1, device_num=1, rank=rank_id, shuffle=False,
- config=config)
-
- args.logger.info('testing shape : {}'.format(config.test_img_shape))
- args.logger.info('totol {} images to eval'.format(data_size))
-
- network.set_train(False)
-
- # init detection engine
- detection = DetectionEngine(args)
-
- input_shape = Tensor(tuple(config.test_img_shape), ms.float32)
- args.logger.info('Start inference....')
- for i, data in enumerate(ds.create_dict_iterator()):
- image = Tensor(data["image"])
-
- image_shape = Tensor(data["image_shape"])
- image_id = Tensor(data["img_id"])
-
- prediction = network(image, input_shape)
- output_big, output_me, output_small = prediction
- output_big = output_big.asnumpy()
- output_me = output_me.asnumpy()
- output_small = output_small.asnumpy()
- image_id = image_id.asnumpy()
- image_shape = image_shape.asnumpy()
-
- detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, image_id)
- if i % 1000 == 0:
- args.logger.info('Processing... {:.2f}% '.format(i * args.per_batch_size / data_size * 100))
-
- args.logger.info('Calculating mAP...')
- detection.do_nms_for_results()
- result_file_path = detection.write_result()
- args.logger.info('result file path: {}'.format(result_file_path))
- eval_result = detection.get_eval_result()
-
- cost_time = time.time() - start_time
- args.logger.info('\n=============coco eval reulst=========\n' + eval_result)
- args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.))
-
-
- if __name__ == "__main__":
- test()
|