Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
|
5 years ago | |
|---|---|---|
| .. | ||
| README.md | 5 years ago | |
| __init__.py | 5 years ago | |
| hyper_parameter_config.ini | 5 years ago | |
| run_distribute_pretrain.py | 5 years ago | |
The number of D chips can be automatically allocated based on the device_num set in hccl config file, You don not need to specify that.
For example, if we want to run the distributed training of Bert model on D chip, we can in /bert/ dir:
python model_zoo/utils/ascend_distributed_launcher/run_distribute_pretrain.py --run_script_dir ./run_pretrain.py --hyper_parameter_config_dir model_zoo/utils/ascend_distributed_launcher/hyper_parameter_config.ini --data_dir /path/dataset/ --hccl_config_dir model_zoo/utils/hccl_tools/hccl_2p_56_x.x.x.x.json
output:
hccl_config_dir: model_zoo/utils/hccl_tools/hccl_2p_56_x.x.x.x.json
the number of logical core: 192
avg_core_per_rank: 96
rank_size: 2
start training for rank 0, device 5:
rank_id: 0
device_id: 5
core nums: 0-95
epoch_size: 8
data_dir: /data/small_512/
schema_dir:
log file dir: ./LOG5/log.txt
start training for rank 1, device 6:
rank_id: 1
device_id: 6
core nums: 96-191
epoch_size: 8
data_dir: /data/small_512/
schema_dir:
log file dir: ./LOG6/log.txt
Note that hccl_2p_56_x.x.x.x.json can use hccl_tools.py to generate.
For hyper parameter, please note that you should customize the scripts hyper_parameter_config.ini. Please note that these two hyper parameters are not allowed to be configured here:
device_id
device_num
For Other Model, please note that you should customize the option run_script and Corresponding hyper_parameter_config.ini.
MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
C++ Python Text Unity3D Asset C other