|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- BGCF training script.
- """
- import os
- import datetime
-
- from mindspore import Tensor
- import mindspore.context as context
- from mindspore.common import dtype as mstype
- from mindspore.train.serialization import save_checkpoint, load_checkpoint
-
- from src.bgcf import BGCF
- from src.metrics import BGCFEvaluate
- from src.config import parser_args
- from src.utils import BGCFLogger, convert_item_id
- from src.callback import ForwardBGCF, TrainBGCF, TestBGCF
- from src.dataset import load_graph, create_dataset, TestGraphDataset
-
-
- def train_and_eval():
- """Train and eval"""
- num_user = train_graph.graph_info()["node_num"][0]
- num_item = train_graph.graph_info()["node_num"][1]
- num_pairs = train_graph.graph_info()['edge_num'][0]
-
- bgcfnet = BGCF([parser.input_dim, num_user, num_item],
- parser.embedded_dimension,
- parser.activation,
- parser.neighbor_dropout,
- num_user,
- num_item,
- parser.input_dim)
-
- train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate,
- parser.epsilon, parser.dist_reg)
- train_net.set_train(True)
-
- eval_class = BGCFEvaluate(parser, train_graph, test_graph, parser.Ks)
-
- itr = train_ds.create_dict_iterator(parser.num_epoch)
- num_iter = int(num_pairs / parser.batch_pairs)
-
- for _epoch in range(1, parser.num_epoch + 1):
-
- iter_num = 1
-
- for data in itr:
-
- u_id = Tensor(data["users"], mstype.int32)
- pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32)
- neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32)
- pos_users = Tensor(data["pos_users"], mstype.int32)
- pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32)
-
- u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32)
- u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32)
- u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32)
-
- i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32)
- i_neighs = Tensor(data["i_neighs"], mstype.int32)
- i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32)
-
- neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32)
- neg_neighs = Tensor(data["neg_neighs"], mstype.int32)
- neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32)
-
- train_loss = train_net(u_id,
- pos_item_id,
- neg_item_id,
- pos_users,
- pos_items,
- u_group_nodes,
- u_neighs,
- u_gnew_neighs,
- i_group_nodes,
- i_neighs,
- i_gnew_neighs,
- neg_group_nodes,
- neg_neighs,
- neg_gnew_neighs)
-
- if iter_num == num_iter:
- print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num,
- 'loss',
- '{}'.format(train_loss))
- iter_num += 1
-
- if _epoch % parser.eval_interval == 0:
- if os.path.exists("ckpts/bgcf.ckpt"):
- os.remove("ckpts/bgcf.ckpt")
- save_checkpoint(bgcfnet, "ckpts/bgcf.ckpt")
-
- bgcfnet_test = BGCF([parser.input_dim, num_user, num_item],
- parser.embedded_dimension,
- parser.activation,
- [0.0, 0.0, 0.0],
- num_user,
- num_item,
- parser.input_dim)
-
- load_checkpoint("ckpts/bgcf.ckpt", net=bgcfnet_test)
-
- forward_net = ForwardBGCF(bgcfnet_test)
- user_reps, item_reps = TestBGCF(forward_net, num_user, num_item, parser.input_dim, test_graph_dataset)
-
- test_recall_bgcf, test_ndcg_bgcf, \
- test_sedp, test_nov = eval_class.eval_with_rep(user_reps, item_reps, parser)
-
- if parser.log_name:
- log.write(
- 'epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, '
- 'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch,
- test_recall_bgcf[1],
- test_recall_bgcf[2],
- test_ndcg_bgcf[1],
- test_ndcg_bgcf[2],
- test_sedp[0],
- test_sedp[1],
- test_nov[1],
- test_nov[2]))
- else:
- print('epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, '
- 'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch,
- test_recall_bgcf[1],
- test_recall_bgcf[2],
- test_ndcg_bgcf[1],
- test_ndcg_bgcf[2],
- test_sedp[0],
- test_sedp[1],
- test_nov[1],
- test_nov[2]))
-
-
- if __name__ == "__main__":
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend",
- save_graphs=False)
-
- parser = parser_args()
-
- train_graph, test_graph, sampled_graph_list = load_graph(parser.datapath)
- train_ds = create_dataset(train_graph, sampled_graph_list, batch_size=parser.batch_pairs)
- test_graph_dataset = TestGraphDataset(train_graph, sampled_graph_list, num_samples=parser.raw_neighs,
- num_bgcn_neigh=parser.gnew_neighs,
- num_neg=parser.num_neg)
-
- if parser.log_name:
- now = datetime.datetime.now().strftime("%b_%d_%H_%M_%S")
- name = "bgcf" + '-' + parser.log_name + '-' + parser.dataset
- log_save_path = './log-files/' + name + '/' + now
- log = BGCFLogger(logname=name, now=now, foldername='log-files', copy=False)
- log.open(log_save_path + '/log.train.txt', mode='a')
- for arg in vars(parser):
- log.write(arg + '=' + str(getattr(parser, arg)) + '\n')
- else:
- for arg in vars(parser):
- print(arg + '=' + str(getattr(parser, arg)))
-
- train_and_eval()
|