|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation script for SQuAD task"""
-
- import os
- import collections
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore.common.tensor import Tensor
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src import tokenization
- from src.evaluation_config import cfg, bert_net_cfg
- from src.utils import BertSquad
- from src.create_squad_data import read_squad_examples, convert_examples_to_features
- from src.run_squad import write_predictions
-
- def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''):
- """get SQuAD dataset from tfrecord"""
- ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
- "segment_ids", "unique_ids"],
- shuffle=False)
- type_cast_op = C.TypeCast(mstype.int32)
- ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_mask", operations=type_cast_op)
- ds = ds.repeat(repeat_count)
- ds = ds.batch(batch_size, drop_remainder=True)
- return ds
-
- def test_eval():
- """Evaluation function for SQuAD task"""
- tokenizer = tokenization.FullTokenizer(vocab_file="./vocab.txt", do_lower_case=True)
- input_file = "dataset/v1.1/dev-v1.1.json"
- eval_examples = read_squad_examples(input_file, False)
- eval_features = convert_examples_to_features(
- examples=eval_examples,
- tokenizer=tokenizer,
- max_seq_length=384,
- doc_stride=128,
- max_query_length=64,
- is_training=False,
- output_fn=None,
- verbose_logging=False)
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=device_id)
- dataset = get_squad_dataset(bert_net_cfg.batch_size, 1)
- net = BertSquad(bert_net_cfg, False, 2)
- net.set_train(False)
- param_dict = load_checkpoint(cfg.finetune_ckpt)
- load_param_into_net(net, param_dict)
- model = Model(net)
- output = []
- RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
- columns_list = ["input_ids", "input_mask", "segment_ids", "unique_ids"]
- for data in dataset.create_dict_iterator():
- input_data = []
- for i in columns_list:
- input_data.append(Tensor(data[i]))
- input_ids, input_mask, segment_ids, unique_ids = input_data
- start_positions = Tensor([1], mstype.float32)
- end_positions = Tensor([1], mstype.float32)
- is_impossible = Tensor([1], mstype.float32)
- logits = model.predict(input_ids, input_mask, segment_ids, start_positions,
- end_positions, unique_ids, is_impossible)
- ids = logits[0].asnumpy()
- start = logits[1].asnumpy()
- end = logits[2].asnumpy()
-
- for i in range(bert_net_cfg.batch_size):
- unique_id = int(ids[i])
- start_logits = [float(x) for x in start[i].flat]
- end_logits = [float(x) for x in end[i].flat]
- output.append(RawResult(
- unique_id=unique_id,
- start_logits=start_logits,
- end_logits=end_logits))
- write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json",
- None, None, False, False)
-
-
- if __name__ == "__main__":
- test_eval()
|