|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class Net1(nn.Cell):
- def __init__(self):
- super(Net1, self).__init__()
- self.relu1 = P.ReLU()
- self.relu2 = P.ReLU()
- self.mul = P.Mul()
- self.control = P.ControlDepend()
-
- def construct(self, x, y):
- a = self.relu1(x)
- b = self.relu2(y)
- c = self.mul(a, b)
- e = self.control(a, b)
- return c, e
-
-
- class Net2(nn.Cell):
- def __init__(self):
- super(Net2, self).__init__()
- self.relu1 = P.ReLU()
- self.relu2 = P.ReLU().add_prim_attr("primitive_target", "CPU")
- self.mul = P.Mul()
- self.control = P.ControlDepend()
-
- def construct(self, x, y):
- a = self.relu1(x)
- b = self.relu2(y)
- c = self.mul(a, b)
- e = self.control(a, b)
- return c, e
-
-
- def test_net():
- x = np.random.randn(2, 3, 3, 4).astype(np.float32)
- y = np.random.randn(2, 3, 3, 4).astype(np.float32)
- net1 = Net1()
- output1 = net1(Tensor(x), Tensor(y))
-
- context.set_context(save_graphs=True)
- net2 = Net2()
- output2 = net2(Tensor(x), Tensor(y))
- assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())
- print("##success##")
-
-
- if __name__ == "__main__":
- test_net()
|