|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.ops.operations._grad_ops as G
-
-
- class ReluNet(nn.Cell):
- def __init__(self):
- super(ReluNet, self).__init__()
- self.relu = P.ReLU()
- self.relu_grad = G.ReluGrad()
-
- def construct(self, x, dy):
- y = self.relu(x)
- dx = self.relu_grad(dy, y)
- return y, dx
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_ReluV2():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
- x = Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32))
- dy = Tensor(np.array([[[[1, 0, 3],
- [0, 1, 0],
- [2, 1, 1]]]]).astype(np.float32))
- expect_y = np.array([[[[0, 1, 10,],
- [1, 0, 1,],
- [10, 1, 0.]]]]).astype(np.float32)
- expect_dx = np.array([[[[0, 0, 3],
- [0, 0, 0],
- [2, 1, 0]]]]).astype(np.float32)
- net = ReluNet()
- y, dx = net(Tensor(x), Tensor(dy))
-
- assert np.allclose(y.asnumpy(), expect_y)
- assert np.allclose(dx.asnumpy(), expect_dx)
-
-
- class AddReluNet(nn.Cell):
- def __init__(self):
- super(AddReluNet, self).__init__()
- self.add = P.TensorAdd()
- self.relu = P.ReLU()
- self.relu_grad = G.ReluGrad()
-
- def construct(self, x1, x2, dy):
- y = self.add(x1, x2)
- y = self.relu(y)
- dx = self.relu_grad(dy, y)
- return y, dx
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_AddRelu():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
- x1 = Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32))
- x2 = Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32))
- dy = Tensor(np.array([[[[1, 0, 3],
- [0, 1, 0],
- [2, 1, 1]]]]).astype(np.float32))
- expect_y = np.array([[[[0, 2, 20],
- [2, 0, 2],
- [20, 2, 0]]]]).astype(np.float32)
- expect_dx = np.array([[[[0, 0, 3],
- [0, 0, 0],
- [2, 1, 0]]]]).astype(np.float32)
- net = AddReluNet()
- y, dx1 = net(Tensor(x1), Tensor(x2), Tensor(dy))
-
- assert np.allclose(y.asnumpy(), expect_y)
- assert np.allclose(dx1.asnumpy(), expect_dx)
-
- class AddReluGradNet(nn.Cell):
- def __init__(self):
- super(AddReluGradNet, self).__init__()
- self.add = P.TensorAdd()
- self.relu = P.ReLU()
- self.relu_grad = G.ReluGrad()
-
- def construct(self, x, dy1, dy2):
- y = self.relu(x)
- dy = self.add(dy1, dy2)
- dx = self.relu_grad(dy, y)
- return y, dx
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_AddReluGrad():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
- x = Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32))
- dy1 = Tensor(np.array([[[[1, 0, 3],
- [0, 1, 0],
- [2, 1, 1]]]]).astype(np.float32))
- dy2 = Tensor(np.array([[[[1, 0, 3],
- [0, 1, 0],
- [2, 1, 1]]]]).astype(np.float32))
- expect_y = np.array([[[[0, 1, 10,],
- [1, 0, 1,],
- [10, 1, 0.]]]]).astype(np.float32)
- expect_dx = np.array([[[[0, 0, 6],
- [0, 0, 0],
- [4, 2, 0]]]]).astype(np.float32)
- net = AddReluGradNet()
- y, dx1 = net(Tensor(x), Tensor(dy1), Tensor(dy2))
-
- assert np.allclose(y.asnumpy(), expect_y)
- assert np.allclose(dx1.asnumpy(), expect_dx)
|