|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Bernoulli Distribution"""
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from .distribution import Distribution
- from ._utils.utils import cast_to_tensor, check_prob, check_type
-
- class Bernoulli(Distribution):
- """
- Bernoulli Distribution.
-
- Args:
- probs (float, list, numpy.ndarray, Tensor, Parameter): probability of 1 as outcome.
- seed (int): seed to use in sampling. Default: 0.
- dtype (mindspore.dtype): type of the distribution. Default: mstype.int32.
- name (str): name of the distribution. Default: Bernoulli.
-
- Note:
- probs should be proper probabilities (0 <= p <= 1).
- Dist_spec_args is probs.
-
- Examples:
- >>> # To initialize a Bernoulli distribution of prob 0.5
- >>> import mindspore.nn.probability.distribution as msd
- >>> b = msd.Bernoulli(0.5, dtype=mstype.int32)
- >>>
- >>> # The following creates two independent Bernoulli distributions
- >>> b = msd.Bernoulli([0.5, 0.5], dtype=mstype.int32)
- >>>
- >>> # A Bernoulli distribution can be initilized without arguments
- >>> # In this case, probs must be passed in through args during function calls.
- >>> b = msd.Bernoulli(dtype=mstype.int32)
- >>>
- >>> # To use Bernoulli in a network
- >>> class net(Cell):
- >>> def __init__(self):
- >>> super(net, self).__init__():
- >>> self.b1 = msd.Bernoulli(0.5, dtype=mstype.int32)
- >>> self.b2 = msd.Bernoulli(dtype=mstype.int32)
- >>>
- >>> # All the following calls in construct are valid
- >>> def construct(self, value, probs_b, probs_a):
- >>>
- >>> # Similar calls can be made to other probability functions
- >>> # by replacing 'prob' with the name of the function
- >>> ans = self.b1.prob(value)
- >>> # Evaluate with the respect to distribution b
- >>> ans = self.b1.prob(value, probs_b)
- >>>
- >>> # probs must be passed in during function calls
- >>> ans = self.b2.prob(value, probs_a)
- >>>
- >>> # Functions 'sd', 'var', 'entropy' have the same usage as 'mean'
- >>> # Will return 0.5
- >>> ans = self.b1.mean()
- >>> # Will return probs_b
- >>> ans = self.b1.mean(probs_b)
- >>>
- >>> # probs must be passed in during function calls
- >>> ans = self.b2.mean(probs_a)
- >>>
- >>> # Usage of 'kl_loss' and 'cross_entropy' are similar
- >>> ans = self.b1.kl_loss('Bernoulli', probs_b)
- >>> ans = self.b1.kl_loss('Bernoulli', probs_b, probs_a)
- >>>
- >>> # Additional probs_a must be passed in through
- >>> ans = self.b2.kl_loss('Bernoulli', probs_b, probs_a)
- >>>
- >>> # Sample
- >>> ans = self.b1.sample()
- >>> ans = self.b1.sample((2,3))
- >>> ans = self.b1.sample((2,3), probs_b)
- >>> ans = self.b2.sample((2,3), probs_a)
- """
-
- def __init__(self,
- probs=None,
- seed=0,
- dtype=mstype.int32,
- name="Bernoulli"):
- """
- Constructor of Bernoulli distribution.
- """
- param = dict(locals())
- valid_dtype = mstype.int_type + mstype.uint_type
- check_type(dtype, valid_dtype, "Bernoulli")
- super(Bernoulli, self).__init__(seed, dtype, name, param)
- if probs is not None:
- self._probs = cast_to_tensor(probs, hint_dtype=mstype.float32)
- check_prob(self.probs)
- else:
- self._probs = probs
-
- # ops needed for the class
- self.cast = P.Cast()
- self.const = P.ScalarToArray()
- self.dtypeop = P.DType()
- self.erf = P.Erf()
- self.exp = P.Exp()
- self.fill = P.Fill()
- self.log = P.Log()
- self.less = P.Less()
- self.shape = P.Shape()
- self.select = P.Select()
- self.sq = P.Square()
- self.sqrt = P.Sqrt()
- self.uniform = C.uniform
-
- def extend_repr(self):
- if self.is_scalar_batch:
- str_info = f'probs = {self.probs}'
- else:
- str_info = f'batch_shape = {self._broadcast_shape}'
- return str_info
-
- @property
- def probs(self):
- """
- Returns the probability for the outcome is 1.
- """
- return self._probs
-
- def _mean(self, probs1=None):
- r"""
- .. math::
- MEAN(B) = probs1
- """
- return self.probs if probs1 is None else probs1
-
- def _mode(self, probs1=None):
- r"""
- .. math::
- MODE(B) = 1 if probs1 > 0.5 else = 0
- """
- probs1 = self.probs if probs1 is None else probs1
- prob_type = self.dtypeop(probs1)
- zeros = self.fill(prob_type, self.shape(probs1), 0.0)
- ones = self.fill(prob_type, self.shape(probs1), 1.0)
- comp = self.less(0.5, probs1)
- return self.select(comp, ones, zeros)
-
- def _var(self, probs1=None):
- r"""
- .. math::
- VAR(B) = probs1 * probs0
- """
- probs1 = self.probs if probs1 is None else probs1
- probs0 = 1.0 - probs1
- return self.exp(self.log(probs0) + self.log(probs1))
-
- def _entropy(self, probs=None):
- r"""
- .. math::
- H(B) = -probs0 * \log(probs0) - probs1 * \log(probs1)
- """
- probs1 = self.probs if probs is None else probs
- probs0 = 1 - probs1
- return -1 * (probs0 * self.log(probs0)) - (probs1 * self.log(probs1))
-
- def _cross_entropy(self, dist, probs1_b, probs1_a=None):
- """
- Evaluate cross_entropy between Bernoulli distributions.
-
- Args:
- dist (str): type of the distributions. Should be "Bernoulli" in this case.
- probs1_b (Tensor): probs1 of distribution b.
- probs1_a (Tensor): probs1 of distribution a. Default: self.probs.
- """
- if dist == 'Bernoulli':
- return self._entropy(probs=probs1_a) + self._kl_loss(dist, probs1_b, probs1_a)
- return None
-
- def _log_prob(self, value, probs=None):
- r"""
- pmf of Bernoulli distribution.
-
- Args:
- value (Tensor): a Tensor composed of only zeros and ones.
- probs (Tensor): probability of outcome is 1. Default: self.probs.
-
- .. math::
- pmf(k) = probs1 if k = 1;
- pmf(k) = probs0 if k = 0;
- """
- probs1 = self.probs if probs is None else probs
- probs0 = 1.0 - probs1
- return self.log(probs1) * value + self.log(probs0) * (1.0 - value)
-
- def _cdf(self, value, probs=None):
- r"""
- cdf of Bernoulli distribution.
-
- Args:
- value (Tensor): value to be evaluated.
- probs (Tensor): probability of outcome is 1. Default: self.probs.
-
- .. math::
- cdf(k) = 0 if k < 0;
- cdf(k) = probs0 if 0 <= k <1;
- cdf(k) = 1 if k >=1;
- """
- probs1 = self.probs if probs is None else probs
- prob_type = self.dtypeop(probs1)
- value = value * self.fill(prob_type, self.shape(probs1), 1.0)
- probs0 = 1.0 - probs1 * self.fill(prob_type, self.shape(value), 1.0)
- comp_zero = self.less(value, 0.0)
- comp_one = self.less(value, 1.0)
- zeros = self.fill(prob_type, self.shape(value), 0.0)
- ones = self.fill(prob_type, self.shape(value), 1.0)
- less_than_zero = self.select(comp_zero, zeros, probs0)
- return self.select(comp_one, less_than_zero, ones)
-
- def _kl_loss(self, dist, probs1_b, probs1_a=None):
- r"""
- Evaluate bernoulli-bernoulli kl divergence, i.e. KL(a||b).
-
- Args:
- dist (str): type of the distributions. Should be "Bernoulli" in this case.
- probs1_b (Tensor): probs1 of distribution b.
- probs1_a (Tensor): probs1 of distribution a. Default: self.probs.
-
- .. math::
- KL(a||b) = probs1_a * \log(\frac{probs1_a}{probs1_b}) +
- probs0_a * \log(\frac{probs0_a}{probs0_b})
- """
- if dist == 'Bernoulli':
- probs1_a = self.probs if probs1_a is None else probs1_a
- probs0_a = 1.0 - probs1_a
- probs0_b = 1.0 - probs1_b
- return probs1_a * self.log(probs1_a / probs1_b) + probs0_a * self.log(probs0_a / probs0_b)
- return None
-
- def _sample(self, shape=(), probs=None):
- """
- Sampling.
-
- Args:
- shape (tuple): shape of the sample. Default: ().
- probs (Tensor): probs1 of the samples. Default: self.probs.
-
- Returns:
- Tensor, shape is shape + batch_shape.
- """
- probs1 = self.probs if probs is None else probs
- l_zero = self.const(0.0)
- h_one = self.const(1.0)
- sample_uniform = self.uniform(shape + self.shape(probs1), l_zero, h_one, self.seed)
- sample = self.less(sample_uniform, probs1)
- return self.cast(sample, self.dtype)
|