|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train."""
- import argparse
- from mindspore import context
- from mindspore.communication.management import init
- from mindspore.nn.optim.momentum import Momentum
- from mindspore import Model, ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
- from src.md_dataset import create_dataset
- from src.losses import OhemLoss
- from src.deeplabv3 import deeplabv3_resnet50
- from src.config import config
-
- parser = argparse.ArgumentParser(description="Deeplabv3 training")
- parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
- parser.add_argument('--data_url', required=True, default=None, help='Train data url')
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
-
- args_opt = parser.parse_args()
- print(args_opt)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
- Note:
- if per_print_times is 0 do not print loss.
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, per_print_times=1):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0")
- self._per_print_times = per_print_times
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
- str(cb_params.net_outputs)))
- def model_fine_tune(flags, train_net, fix_weight_layer):
- checkpoint_path = flags.checkpoint_url
- if checkpoint_path is None:
- return
- param_dict = load_checkpoint(checkpoint_path)
- load_param_into_net(train_net, param_dict)
- for para in train_net.trainable_params():
- if fix_weight_layer in para.name:
- para.requires_grad = False
- if __name__ == "__main__":
- if args_opt.distribute == "true":
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
- init()
- args_opt.base_size = config.crop_size
- args_opt.crop_size = config.crop_size
- train_dataset = create_dataset(args_opt, args_opt.data_url, 1, config.batch_size, usage="train")
- dataset_size = train_dataset.get_dataset_size()
- time_cb = TimeMonitor(data_size=dataset_size)
- callback = [time_cb, LossCallBack()]
- if config.enable_save_ckpt:
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
- keep_checkpoint_max=config.save_checkpoint_num)
- ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
- callback.append(ckpoint_cb)
- net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
- infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
- decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
- fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
- net.set_train()
- model_fine_tune(args_opt, net, 'layer')
- loss = OhemLoss(config.seg_num_classes, config.ignore_label)
- opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
- model = Model(net, loss, opt)
- model.train(config.epoch_size, train_dataset, callback)
|