|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Evaluate Resnet50 on ImageNet"""
-
- import os
- import argparse
-
- from src.config import quant_set, config_quant, config_noquant
- from src.dataset import create_dataset
- from src.crossentropy import CrossEntropy
- from src.utils import _load_param_into_net
- from models.resnet_quant import resnet50_quant
-
- from mindspore import context
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint
- from mindspore.train.quant import quant
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
- config = config_quant if quant_set.quantization_aware else config_noquant
-
- if args_opt.device_target == "Ascend":
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
- if __name__ == '__main__':
- # define fusion network
- net = resnet50_quant(class_num=config.class_num)
- if quant_set.quantization_aware:
- # convert fusion network to quantization aware network
- net = quant.convert_quant_network(net,
- bn_fold=True,
- per_channel=[True, False],
- symmetric=[True, False])
- # define network loss
- if not config.use_label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropy(smooth_factor=config.label_smooth_factor,
- num_classes=config.class_num)
-
- # define dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=False,
- batch_size=config.batch_size,
- target=args_opt.device_target)
- step_size = dataset.get_dataset_size()
-
- # load checkpoint
- if args_opt.checkpoint_path:
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- _load_param_into_net(net, param_dict)
- net.set_train(False)
-
- # define model
- model = Model(net, loss_fn=loss, metrics={'acc'})
-
- print("============== Starting Validation ==============")
- res = model.eval(dataset)
- print("result:", res, "ckpt=", args_opt.checkpoint_path)
- print("============== End Validation ==============")
|