|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """MobileNetV2 Quant model define"""
-
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore import Tensor
-
- __all__ = ['mobilenetV2']
-
-
- def _make_divisible(v, divisor, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
-
-
- class GlobalAvgPooling(nn.Cell):
- """
- Global avg pooling definition.
-
- Args:
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GlobalAvgPooling()
- """
-
- def __init__(self):
- super(GlobalAvgPooling, self).__init__()
- self.mean = P.ReduceMean(keep_dims=False)
-
- def construct(self, x):
- x = self.mean(x, (2, 3))
- return x
-
-
- class ConvBNReLU(nn.Cell):
- """
- Convolution/Depthwise fused with Batchnorm and ReLU block definition.
-
- Args:
- in_planes (int): Input channel.
- out_planes (int): Output channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size for the first convolutional layer. Default: 1.
- groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
- """
-
- def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
- super(ConvBNReLU, self).__init__()
- padding = (kernel_size - 1) // 2
- self.conv = nn.Conv2dBnAct(in_planes, out_planes, kernel_size,
- stride=stride,
- pad_mode='pad',
- padding=padding,
- group=groups,
- has_bn=True,
- activation='relu')
-
- def construct(self, x):
- x = self.conv(x)
- return x
-
-
- class InvertedResidual(nn.Cell):
- """
- Mobilenetv2 residual block definition.
-
- Args:
- inp (int): Input channel.
- oup (int): Output channel.
- stride (int): Stride size for the first convolutional layer. Default: 1.
- expand_ratio (int): expand ration of input channel
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ResidualBlock(3, 256, 1, 1)
- """
-
- def __init__(self, inp, oup, stride, expand_ratio):
- super(InvertedResidual, self).__init__()
- assert stride in [1, 2]
-
- hidden_dim = int(round(inp * expand_ratio))
- self.use_res_connect = stride == 1 and inp == oup
-
- layers = []
- if expand_ratio != 1:
- layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
- layers.extend([
- # dw
- ConvBNReLU(hidden_dim, hidden_dim,
- stride=stride, groups=hidden_dim),
- # pw-linear
- nn.Conv2dBnAct(hidden_dim, oup, kernel_size=1, stride=1,
- pad_mode='pad', padding=0, group=1, has_bn=True)
- ])
- self.conv = nn.SequentialCell(layers)
- self.add = P.TensorAdd()
-
- def construct(self, x):
- out = self.conv(x)
- if self.use_res_connect:
- out = self.add(out, x)
- return out
-
-
- class mobilenetV2(nn.Cell):
- """
- mobilenetV2 fusion architecture.
-
- Args:
- class_num (Cell): number of classes.
- width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
- has_dropout (bool): Is dropout used. Default is false
- inverted_residual_setting (list): Inverted residual settings. Default is None
- round_nearest (list): Channel round to . Default is 8
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> mobilenetV2(num_classes=1000)
- """
-
- def __init__(self, num_classes=1000, width_mult=1.,
- has_dropout=False, inverted_residual_setting=None, round_nearest=8):
- super(mobilenetV2, self).__init__()
- block = InvertedResidual
- input_channel = 32
- last_channel = 1280
- # setting of inverted residual blocks
- self.cfgs = inverted_residual_setting
- if inverted_residual_setting is None:
- self.cfgs = [
- # t, c, n, s
- [1, 16, 1, 1],
- [6, 24, 2, 2],
- [6, 32, 3, 2],
- [6, 64, 4, 2],
- [6, 96, 3, 1],
- [6, 160, 3, 2],
- [6, 320, 1, 1],
- ]
-
- # building first layer
- input_channel = _make_divisible(
- input_channel * width_mult, round_nearest)
- self.out_channels = _make_divisible(
- last_channel * max(1.0, width_mult), round_nearest)
-
- features = [ConvBNReLU(3, input_channel, stride=2)]
- # building inverted residual blocks
- for t, c, n, s in self.cfgs:
- output_channel = _make_divisible(c * width_mult, round_nearest)
- for i in range(n):
- stride = s if i == 0 else 1
- features.append(
- block(input_channel, output_channel, stride, expand_ratio=t))
- input_channel = output_channel
- # building last several layers
- features.append(ConvBNReLU(
- input_channel, self.out_channels, kernel_size=1))
- # make it nn.CellList
- self.features = nn.SequentialCell(features)
- # mobilenet head
- head = ([GlobalAvgPooling(),
- nn.DenseBnAct(self.out_channels, num_classes,
- has_bias=True, has_bn=False)
- ] if not has_dropout else
- [GlobalAvgPooling(),
- nn.Dropout(0.2),
- nn.DenseBnAct(self.out_channels, num_classes,
- has_bias=True, has_bn=False)
- ])
- self.head = nn.SequentialCell(head)
-
- # init weights
- self.init_parameters_data()
- self._initialize_weights()
-
- def construct(self, x):
- x = self.features(x)
- x = self.head(x)
- return x
-
- def _initialize_weights(self):
- """
- Initialize weights.
-
- Args:
-
- Returns:
- None.
-
- Examples:
- >>> _initialize_weights()
- """
- self.init_parameters_data()
- for _, m in self.cells_and_names():
- np.random.seed(1)
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- w = Tensor(np.random.normal(0, np.sqrt(2. / n),
- m.weight.data.shape).astype("float32"))
- m.weight.set_data(w)
- if m.bias is not None:
- m.bias.set_data(
- Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
- elif isinstance(m, nn.Conv2dBnAct):
- n = m.conv.kernel_size[0] * \
- m.conv.kernel_size[1] * m.conv.out_channels
- w = Tensor(np.random.normal(0, np.sqrt(2. / n),
- m.conv.weight.data.shape).astype("float32"))
- m.conv.weight.set_data(w)
- if m.conv.bias is not None:
- m.conv.bias.set_data(
- Tensor(np.zeros(m.conv.bias.data.shape, dtype="float32")))
- elif isinstance(m, nn.BatchNorm2d):
- m.gamma.set_data(
- Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
- m.beta.set_data(
- Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
- elif isinstance(m, nn.Dense):
- m.weight.set_data(Tensor(np.random.normal(
- 0, 0.01, m.weight.data.shape).astype("float32")))
- if m.bias is not None:
- m.bias.set_data(
- Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
- elif isinstance(m, nn.DenseBnAct):
- m.dense.weight.set_data(
- Tensor(np.random.normal(0, 0.01, m.dense.weight.data.shape).astype("float32")))
- if m.dense.bias is not None:
- m.dense.bias.set_data(
- Tensor(np.zeros(m.dense.bias.data.shape, dtype="float32")))
|