|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Train mobilenetV2 on ImageNet."""
-
- import os
- import time
- import argparse
- import random
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore import nn
- from mindspore.parallel._auto_parallel_context import auto_parallel_context
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.loss.loss import _Loss
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.communication.management import init, get_group_size, get_rank
- import mindspore.dataset.engine as de
-
- from src.dataset import create_dataset
- from src.lr_generator import get_lr
- from src.config import config_gpu, config_ascend
- from src.mobilenetV2 import mobilenet_v2
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
- parser.add_argument('--device_targe', type=str, default=None, help='run device_targe')
- args_opt = parser.parse_args()
-
- if args_opt.device_targe == "Ascend":
- device_id = int(os.getenv('DEVICE_ID'))
- rank_id = int(os.getenv('RANK_ID'))
- rank_size = int(os.getenv('RANK_SIZE'))
- run_distribute = rank_size > 1
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend",
- device_id=device_id, save_graphs=False)
- elif args_opt.device_targe == "GPU":
- context.set_context(mode=context.GRAPH_MODE,
- device_target="GPU",
- save_graphs=False)
- init("nccl")
- context.set_auto_parallel_context(device_num=get_group_size(),
- parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- else:
- raise ValueError("Unsupported device target.")
-
-
- class CrossEntropyWithLabelSmooth(_Loss):
- """
- CrossEntropyWith LabelSmooth.
-
- Args:
- smooth_factor (float): smooth factor, default=0.
- num_classes (int): num classes
-
- Returns:
- None.
-
- Examples:
- >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
- """
-
- def __init__(self, smooth_factor=0., num_classes=1000):
- super(CrossEntropyWithLabelSmooth, self).__init__()
- self.onehot = P.OneHot()
- self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
- self.off_value = Tensor(1.0 * smooth_factor /
- (num_classes - 1), mstype.float32)
- self.ce = nn.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean(False)
- self.cast = P.Cast()
-
- def construct(self, logit, label):
- one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
- self.on_value, self.off_value)
- out_loss = self.ce(logit, one_hot_label)
- out_loss = self.mean(out_loss, 0)
- return out_loss
-
-
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
-
- Examples:
- >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
- """
-
- def __init__(self, lr_init=None):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
-
- def epoch_begin(self, run_context):
- self.losses = []
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
-
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / cb_params.batch_num
- print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
- per_step_mseconds,
- np.mean(self.losses)))
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- step_mseconds = (time.time() - self.step_time) * 1000
- step_loss = cb_params.net_outputs
-
- if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
- step_loss = step_loss[0]
- if isinstance(step_loss, Tensor):
- step_loss = np.mean(step_loss.asnumpy())
-
- self.losses.append(step_loss)
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
-
- print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
- cb_params.cur_epoch_num -
- 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
- np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
-
-
- if __name__ == '__main__':
- if args_opt.device_targe == "GPU":
- # train on gpu
- print("train args: ", args_opt)
- print("cfg: ", config_gpu)
-
- # define network
- net = mobilenet_v2(num_classes=config_gpu.num_classes, device_targe="GPU")
- # define loss
- if config_gpu.label_smooth > 0:
- loss = CrossEntropyWithLabelSmooth(smooth_factor=config_gpu.label_smooth,
- num_classes=config_gpu.num_classes)
- else:
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
- # define dataset
- epoch_size = config_gpu.epoch_size
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- config=config_gpu,
- device_targe=args_opt.device_targe,
- repeat_num=1,
- batch_size=config_gpu.batch_size)
- step_size = dataset.get_dataset_size()
- # resume
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
-
- # get learning rate
- loss_scale = FixedLossScaleManager(
- config_gpu.loss_scale, drop_overflow_update=False)
- lr = Tensor(get_lr(global_step=0,
- lr_init=0,
- lr_end=0,
- lr_max=config_gpu.lr,
- warmup_epochs=config_gpu.warmup_epochs,
- total_epochs=epoch_size,
- steps_per_epoch=step_size))
-
- # define optimization
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum,
- config_gpu.weight_decay, config_gpu.loss_scale)
- # define model
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
-
- print("============== Starting Training ==============")
- cb = [Monitor(lr_init=lr.asnumpy())]
- ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
- if config_gpu.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config_gpu.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
- cb += [ckpt_cb]
- # begin train
- model.train(epoch_size, dataset, callbacks=cb)
- print("============== End Training ==============")
- elif args_opt.device_targe == "Ascend":
- # train on ascend
- print("train args: ", args_opt, "\ncfg: ", config_ascend,
- "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
-
- if run_distribute:
- context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
- parameter_broadcast=True, mirror_mean=True)
- auto_parallel_context().set_all_reduce_fusion_split_indices([140])
- init()
-
- epoch_size = config_ascend.epoch_size
- net = mobilenet_v2(num_classes=config_ascend.num_classes, device_targe="Ascend")
- net.to_float(mstype.float16)
- for _, cell in net.cells_and_names():
- if isinstance(cell, nn.Dense):
- cell.to_float(mstype.float32)
- if config_ascend.label_smooth > 0:
- loss = CrossEntropyWithLabelSmooth(
- smooth_factor=config_ascend.label_smooth, num_classes=config_ascend.num_classes)
- else:
- loss = SoftmaxCrossEntropyWithLogits(
- is_grad=False, sparse=True, reduction='mean')
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- config=config_ascend,
- device_targe=args_opt.device_targe,
- repeat_num=1,
- batch_size=config_ascend.batch_size)
- step_size = dataset.get_dataset_size()
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
-
- loss_scale = FixedLossScaleManager(
- config_ascend.loss_scale, drop_overflow_update=False)
- lr = Tensor(get_lr(global_step=0,
- lr_init=0,
- lr_end=0,
- lr_max=config_ascend.lr,
- warmup_epochs=config_ascend.warmup_epochs,
- total_epochs=epoch_size,
- steps_per_epoch=step_size))
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum,
- config_ascend.weight_decay, config_ascend.loss_scale)
-
- model = Model(net, loss_fn=loss, optimizer=opt,
- loss_scale_manager=loss_scale)
-
- cb = None
- if rank_id == 0:
- cb = [Monitor(lr_init=lr.asnumpy())]
- if config_ascend.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config_ascend.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(
- prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck)
- cb += [ckpt_cb]
- model.train(epoch_size, dataset, callbacks=cb)
- else:
- raise ValueError("Unsupported device_targe.")
|