|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """unit tests for numpy math operations"""
- from functools import partial
-
- import pytest
- import numpy as onp
-
- import mindspore.numpy as mnp
- from mindspore import context
-
-
- def rand_int(*shape):
- """return an random integer array with parameter shape"""
- res = onp.random.randint(low=1, high=5, size=shape)
- if isinstance(res, onp.ndarray):
- return res.astype(onp.float32)
- return float(res)
-
-
- # return an random boolean array
- def rand_bool(*shape):
- return onp.random.rand(*shape) > 0.5
-
-
- class Cases():
- def __init__(self):
- self.device_cpu = context.get_context('device_target')
-
- self.arrs = [
- rand_int(2),
- rand_int(2, 3),
- rand_int(2, 3, 4),
- rand_int(2, 3, 4, 5),
- ]
-
- # scalars expanded across the 0th dimension
- self.scalars = [
- rand_int(),
- rand_int(1),
- rand_int(1, 1),
- rand_int(1, 1, 1, 1),
- ]
-
- # empty arrays
- self.empty_arrs = [
- rand_int(0),
- rand_int(4, 0),
- rand_int(2, 0, 2),
- rand_int(5, 0, 7, 0),
- ]
-
- # arrays of the same size expanded across the 0th dimension
- self.expanded_arrs = [
- rand_int(2, 3),
- rand_int(1, 2, 3),
- rand_int(1, 1, 2, 3),
- rand_int(1, 1, 1, 2, 3),
- ]
-
- # arrays of the same size expanded across the 0th dimension
- self.expanded_arrs = [
- rand_int(2, 3),
- rand_int(1, 2, 3),
- rand_int(1, 1, 2, 3),
- rand_int(1, 1, 1, 2, 3),
- ]
-
- # arrays with last dimension aligned
- self.aligned_arrs = [
- rand_int(2, 3),
- rand_int(1, 4, 3),
- rand_int(5, 1, 2, 3),
- rand_int(4, 2, 1, 1, 3),
- ]
-
- # arrays which can be broadcast
- self.broadcastables = [
- rand_int(5),
- rand_int(6, 1),
- rand_int(7, 1, 5),
- rand_int(8, 1, 6, 1)
- ]
-
- # boolean arrays which can be broadcast
- self.bool_broadcastables = [
- rand_bool(),
- rand_bool(1),
- rand_bool(5),
- rand_bool(6, 1),
- rand_bool(7, 1, 5),
- rand_bool(8, 1, 6, 1),
- ]
-
- # core dimension 0 is matched for each
- # pair of array[i] and array[i + 1]
- self.core_broadcastables = [
- rand_int(3),
- rand_int(3),
- rand_int(6),
- rand_int(6, 4),
- rand_int(5, 2),
- rand_int(2),
- rand_int(2, 9),
- rand_int(9, 8),
- rand_int(6),
- rand_int(2, 6, 5),
- rand_int(9, 2, 7),
- rand_int(7),
- rand_int(5, 2, 4),
- rand_int(6, 1, 4, 9),
- rand_int(7, 1, 5, 3, 2),
- rand_int(8, 1, 6, 1, 2, 9),
- ]
-
- # arrays with dimensions of size 1
- self.nested_arrs = [
- rand_int(1),
- rand_int(1, 2),
- rand_int(3, 1, 8),
- rand_int(1, 3, 9, 1),
- ]
-
-
- test_case = Cases()
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- def mnp_add(x1, x2):
- return mnp.add(x1, x2)
-
-
- def onp_add(x1, x2):
- return onp.add(x1, x2)
-
-
- def mnp_subtract(x1, x2):
- return mnp.subtract(x1, x2)
-
-
- def onp_subtract(x1, x2):
- return onp.subtract(x1, x2)
-
-
- def mnp_mutiply(x1, x2):
- return mnp.multiply(x1, x2)
-
-
- def onp_multiply(x1, x2):
- return onp.multiply(x1, x2)
-
-
- def mnp_divide(x1, x2):
- return mnp.divide(x1, x2)
-
-
- def onp_divide(x1, x2):
- return onp.divide(x1, x2)
-
-
- def mnp_power(x1, x2):
- return mnp.power(x1, x2)
-
-
- def onp_power(x1, x2):
- return onp.power(x1, x2)
-
-
- def mnp_inner(a, b):
- return mnp.inner(a, b)
-
-
- def onp_inner(a, b):
- return onp.inner(a, b)
-
-
- def mnp_dot(a, b):
- return mnp.dot(a, b)
-
-
- def onp_dot(a, b):
- return onp.dot(a, b)
-
-
- def mnp_outer(a, b):
- return mnp.outer(a, b)
-
-
- def onp_outer(a, b):
- return onp.outer(a, b)
-
-
- def mnp_add_kwargs(x, y, where=None, out=None):
- return mnp.add(x, y, where=where, out=out)
-
-
- def onp_add_kwargs(x, y, where=None, out=None):
- return onp.add(x, y, where=where, out=out)
-
-
- def mnp_subtract_kwargs(x, y, where=None, out=None):
- return mnp.subtract(x, y, where=where, out=out)
-
-
- def onp_subtract_kwargs(x, y, where=None, out=None):
- return onp.subtract(x, y, where=where, out=out)
-
-
- def mnp_multiply_kwargs(x, y, where=None, out=None):
- return mnp.multiply(x, y, where=where, out=out)
-
-
- def onp_multiply_kwargs(x, y, where=None, out=None):
- return onp.multiply(x, y, where=where, out=out)
-
-
- def mnp_divide_kwargs(x, y, where=None, out=None):
- return mnp.divide(x, y, where=where, out=out)
-
-
- def onp_divide_kwargs(x, y, where=None, out=None):
- return onp.divide(x, y, where=where, out=out)
-
-
- def mnp_power_kwargs(x, y, where=None, out=None):
- return mnp.power(x, y, where=where, out=out)
-
-
- def onp_power_kwargs(x, y, where=None, out=None):
- return onp.power(x, y, where=where, out=out)
-
-
- def mnp_tensordot(x, y):
- a = mnp.tensordot(x, y)
- b = mnp.tensordot(x, y, axes=0)
- c = mnp.tensordot(x, y, axes=1)
- d = mnp.tensordot(x, y, axes=2)
- e = mnp.tensordot(x, y, axes=(3, 0))
- f = mnp.tensordot(x, y, axes=[2, 1])
- g = mnp.tensordot(x, y, axes=((2, 3), (0, 1)))
- h = mnp.tensordot(x, y, axes=[[3, 2], [1, 0]])
- return a, b, c, d, e, f, g, h
-
-
- def onp_tensordot(x, y):
- a = onp.tensordot(x, y)
- b = onp.tensordot(x, y, axes=0)
- c = onp.tensordot(x, y, axes=1)
- d = onp.tensordot(x, y, axes=2)
- e = onp.tensordot(x, y, axes=(3, 0))
- f = onp.tensordot(x, y, axes=[2, 1])
- g = onp.tensordot(x, y, axes=((2, 3), (0, 1)))
- h = onp.tensordot(x, y, axes=[[3, 2], [1, 0]])
- return a, b, c, d, e, f, g, h
-
-
- def run_binop_test(mnp_fn, onp_fn):
- for arr in test_case.arrs:
- match_res(mnp_fn, onp_fn, arr, arr)
-
- for scalar in test_case.scalars:
- match_res(mnp_fn, onp_fn, arr, scalar)
- match_res(mnp_fn, onp_fn, scalar, arr)
-
- for scalar1 in test_case.scalars:
- for scalar2 in test_case.scalars:
- match_res(mnp_fn, onp_fn, scalar1, scalar2)
-
- for expanded_arr1 in test_case.expanded_arrs:
- for expanded_arr2 in test_case.expanded_arrs:
- match_res(mnp_fn, onp_fn, expanded_arr1, expanded_arr2)
-
- for broadcastable1 in test_case.broadcastables:
- for broadcastable2 in test_case.broadcastables:
- match_res(mnp_fn, onp_fn, broadcastable1, broadcastable2)
-
-
- def run_multi_test(mnp_fn, onp_fn, arrs):
- mnp_arrs = map(mnp.asarray, arrs)
- for actual, expected in zip(mnp_fn(*mnp_arrs), onp_fn(*arrs)):
- match_array(actual.asnumpy(), expected)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_add():
- run_binop_test(mnp_add, onp_add)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_subtract():
- run_binop_test(mnp_subtract, onp_subtract)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_multiply():
- run_binop_test(mnp_mutiply, onp_multiply)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_divide():
- run_binop_test(mnp_divide, onp_divide)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_power():
- run_binop_test(mnp_power, onp_power)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_inner():
- for arr1 in test_case.aligned_arrs:
- for arr2 in test_case.aligned_arrs:
- match_res(mnp_inner, onp_inner, arr1, arr2)
-
- for scalar1 in test_case.scalars:
- for scalar2 in test_case.scalars:
- match_res(mnp_inner, onp_inner,
- scalar1, scalar2)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot():
- # test case (1D, 1D)
- match_res(mnp_dot, onp_dot, rand_int(3), rand_int(3))
-
- # test case (2D, 2D)
- match_res(mnp_dot, onp_dot, rand_int(4, 7), rand_int(7, 2))
-
- # test case (0D, _) (_, 0D)
- match_res(mnp_dot, onp_dot, rand_int(), rand_int(1, 9, 3))
- match_res(mnp_dot, onp_dot, rand_int(8, 5, 6, 3), rand_int())
-
- # test case (ND, 1D)
- match_res(mnp_dot, onp_dot, rand_int(2, 4, 5), rand_int(5))
-
- # test case (ND, MD)
- match_res(mnp_dot, onp_dot, rand_int(5, 4, 1, 8), rand_int(8, 3))
-
- for i in range(8):
- match_res(mnp_dot, onp_dot,
- test_case.core_broadcastables[2*i], test_case.core_broadcastables[2*i + 1])
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_outer():
- run_binop_test(mnp_outer, onp_outer)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_add_kwargs():
- for where in test_case.bool_broadcastables[:2]:
- for x in test_case.broadcastables[:2]:
- for y in test_case.broadcastables[:2]:
- shape_out = onp.broadcast(where, x, y).shape
- out = rand_int(*shape_out)
- match_res(mnp_add_kwargs, onp_add_kwargs, x, y, where, out)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_tensordot():
- x = rand_int(4, 2, 7, 7)
- y = rand_int(7, 7, 6)
- run_multi_test(mnp_tensordot, onp_tensordot, (x, y))
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_type_promotion():
- arr = rand_int(2, 3)
- onp_sum = onp_add(arr, arr)
-
- a = mnp.asarray(arr, dtype='float16')
- b = mnp.asarray(arr, dtype='float32')
- c = mnp.asarray(arr, dtype='int32')
-
- match_array(mnp_add(a, b).asnumpy(), onp_sum)
- match_array(mnp_add(b, c).asnumpy(), onp_sum)
-
-
- def mnp_absolute(x):
- return mnp.absolute(x)
-
-
- def onp_absolute(x):
- return onp.absolute(x)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_absolute():
- arr = rand_int(2, 3)
-
- a = mnp.asarray(arr, dtype='float16')
- b = mnp.asarray(arr, dtype='float32')
- c = mnp.asarray(arr, dtype='uint8')
- d = mnp.asarray(arr, dtype='bool')
-
- match_array(mnp_absolute(a).asnumpy(), onp_absolute(a.asnumpy()))
- match_array(mnp_absolute(b).asnumpy(), onp_absolute(b.asnumpy()))
- match_array(mnp_absolute(c).asnumpy(), onp_absolute(c.asnumpy()))
- match_array(mnp_absolute(d).asnumpy(), onp_absolute(d.asnumpy()))
-
- where = rand_int(2, 3).astype('bool')
- out = rand_int(2, 3)
- match_array(mnp.absolute(a, out=mnp.asarray(out), where=mnp.asarray(where)).asnumpy(),
- onp.absolute(a.asnumpy(), out=out, where=where))
-
-
- def mnp_add_dtype(x1, x2, out, where):
- a = mnp.add(x1, x2, dtype=mnp.float16)
- b = mnp.add(x1, x2, out=out, dtype=mnp.float16)
- c = mnp.add(x1, x2, where=where, dtype=mnp.float16)
- d = mnp.add(x1, x2, out=out, where=where, dtype=mnp.float16)
- return a, b, c, d
-
-
- def onp_add_dtype(x1, x2, out, where):
- a = onp.add(x1, x2, dtype=onp.float16)
- b = onp.add(x1, x2, out=out, dtype=onp.float16)
- c = onp.add(x1, x2, where=where, dtype=onp.float16)
- d = onp.add(x1, x2, out=out, where=where, dtype=onp.float16)
- return a, b, c, d
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_add_dtype():
- x1 = rand_int(2, 3).astype('int32')
- x2 = rand_int(2, 3).astype('int32')
- out = rand_int(2, 3).astype('float32')
- where = rand_bool(2, 3)
- arrs = (x1, x2, out, where)
- mnp_arrs = map(mnp.array, arrs)
- mnp_res = mnp_add_dtype(*mnp_arrs)
- onp_res = onp_add_dtype(*arrs)
- for actual, expected in zip(mnp_res, onp_res):
- assert actual.asnumpy().dtype == expected.dtype
-
-
- # check if the output from mnp function and onp function applied on the arrays are matched
-
-
- def match_res(mnp_fn, onp_fn, *arrs):
- mnp_arrs = map(partial(mnp.asarray, dtype='float32'), arrs)
- mnp_res = mnp_fn(*mnp_arrs)
- onp_res = onp_fn(*arrs)
- if isinstance(mnp_res, (tuple, list)):
- for actual, expected in zip(mnp_res, onp_res):
- match_array(actual.asnumpy(), expected)
- else:
- match_array(mnp_res.asnumpy(), onp_res)
-
-
- def match_array(actual, expected, error=5):
- if error > 0:
- onp.testing.assert_almost_equal(actual.tolist(), expected.tolist(),
- decimal=error)
- else:
- onp.testing.assert_equal(actual.tolist(), expected.tolist())
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_exception_innner():
- with pytest.raises(ValueError):
- mnp.inner(mnp.asarray(test_case.arrs[0]),
- mnp.asarray(test_case.arrs[1]))
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_exception_add():
- with pytest.raises(ValueError):
- mnp.add(mnp.asarray(test_case.arrs[1]), mnp.asarray(test_case.arrs[2]))
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_exception_mean():
- with pytest.raises(ValueError):
- mnp.mean(mnp.asarray(test_case.arrs[0]), (-1, 0))
|