|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test summary ops."""
- import os
- import shutil
- import tempfile
-
- import numpy as np
- import pytest
-
- from mindspore import nn, Tensor, context
- from mindspore.common.initializer import Normal
- from mindspore.nn.metrics import Loss
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from mindspore.train.summary.summary_record import _get_summary_tensor_data
- from tests.st.summary.dataset import create_mnist_dataset
-
-
- class LeNet5(nn.Cell):
- """LeNet network"""
-
- def __init__(self, num_class=10, num_channel=1, include_top=True):
- super(LeNet5, self).__init__()
- self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.include_top = include_top
- if self.include_top:
- self.flatten = nn.Flatten()
- self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
- self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
- self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
-
- self.scalar_summary = P.ScalarSummary()
- self.image_summary = P.ImageSummary()
- self.tensor_summary = P.TensorSummary()
- self.channel = Tensor(num_channel)
-
- def construct(self, x):
- """construct"""
- self.image_summary('x', x)
- self.tensor_summary('x', x)
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- if not self.include_top:
- return x
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- self.scalar_summary('x_fc3', x[0][0])
- return x
-
-
- class TestSummaryOps:
- """Test summary ops."""
- base_summary_dir = ''
-
- @classmethod
- def setup_class(cls):
- """Run before test this class."""
- device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
- context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
- cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
-
- @classmethod
- def teardown_class(cls):
- """Run after test this class."""
- if os.path.exists(cls.base_summary_dir):
- shutil.rmtree(cls.base_summary_dir)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_summary_ops(self):
- """Test summary operators."""
- ds_train = create_mnist_dataset('train', num_samples=1, batch_size=1)
- ds_train_iter = ds_train.create_dict_iterator()
- expected_data = next(ds_train_iter)['image'].asnumpy()
-
- net = LeNet5()
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- model = Model(net, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()})
- model.train(1, ds_train, dataset_sink_mode=False)
-
- summary_data = _get_summary_tensor_data()
- image_data = summary_data['x[:Image]'].asnumpy()
- tensor_data = summary_data['x[:Tensor]'].asnumpy()
- x_fc3 = summary_data['x_fc3[:Scalar]'].asnumpy()
-
- assert np.allclose(expected_data, image_data)
- assert np.allclose(expected_data, tensor_data)
- assert not np.allclose(0, x_fc3)
|