|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Beta distribution"""
- import numpy as np
- from scipy import stats
- from scipy import special
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Beta distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.b.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
- expect_pdf = beta_benchmark.pdf([0.25, 0.75]).astype(np.float32)
- pdf = Prob()
- output = pdf(Tensor([0.25, 0.75], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Beta distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.b.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
- expect_logpdf = beta_benchmark.logpdf([0.25, 0.75]).astype(np.float32)
- logprob = LogProb()
- output = logprob(Tensor([0.25, 0.75], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class KL(nn.Cell):
- """
- Test class: kl_loss of Beta distribution.
- """
- def __init__(self):
- super(KL, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- return self.b.kl_loss('Beta', x_, y_)
-
- def test_kl_loss():
- """
- Test kl_loss.
- """
- concentration1_a = np.array([3.0]).astype(np.float32)
- concentration0_a = np.array([4.0]).astype(np.float32)
-
- concentration1_b = np.array([1.0]).astype(np.float32)
- concentration0_b = np.array([1.0]).astype(np.float32)
-
- total_concentration_a = concentration1_a + concentration0_a
- total_concentration_b = concentration1_b + concentration0_b
- log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
- log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
- expect_kl_loss = (log_normalization_b - log_normalization_a) \
- - (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
- - (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
- + (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
-
- kl_loss = KL()
- concentration1 = Tensor(concentration1_b, dtype=dtype.float32)
- concentration0 = Tensor(concentration0_b, dtype=dtype.float32)
- output = kl_loss(concentration1, concentration0)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Beta distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([3.0]), dtype=dtype.float32)
-
- def construct(self):
- return self.b.mean(), self.b.sd(), self.b.mode()
-
- def test_basics():
- """
- Test mean/standard deviation/mode.
- """
- basics = Basics()
- mean, sd, mode = basics()
- beta_benchmark = stats.beta(np.array([3.0]), np.array([3.0]))
- expect_mean = beta_benchmark.mean().astype(np.float32)
- expect_sd = beta_benchmark.std().astype(np.float32)
- expect_mode = [0.5]
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Beta distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([1.0]), seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, concentration1=None, concentration0=None):
- return self.b.sample(self.shape, concentration1, concentration0)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- concentration1 = Tensor([2.0], dtype=dtype.float32)
- concentration0 = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(concentration1, concentration0)
- assert output.shape == (2, 3, 3)
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Beta distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
-
- def construct(self):
- return self.b.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
- expect_entropy = beta_benchmark.entropy().astype(np.float32)
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
-
- class CrossEntropy(nn.Cell):
- """
- Test class: cross entropy between Beta distributions.
- """
- def __init__(self):
- super(CrossEntropy, self).__init__()
- self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- entropy = self.b.entropy()
- kl_loss = self.b.kl_loss('Beta', x_, y_)
- h_sum_kl = entropy + kl_loss
- cross_entropy = self.b.cross_entropy('Beta', x_, y_)
- return h_sum_kl - cross_entropy
-
- def test_cross_entropy():
- """
- Test cross_entropy.
- """
- cross_entropy = CrossEntropy()
- concentration1 = Tensor([3.0], dtype=dtype.float32)
- concentration0 = Tensor([2.0], dtype=dtype.float32)
- diff = cross_entropy(concentration1, concentration0)
- tol = 1e-6
- assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
-
- class Net(nn.Cell):
- """
- Test class: expand single distribution instance to multiple graphs
- by specifying the attributes.
- """
-
- def __init__(self):
- super(Net, self).__init__()
- self.beta = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- kl = self.beta.kl_loss('Beta', x_, y_)
- prob = self.beta.prob(kl)
- return prob
-
- def test_multiple_graphs():
- """
- Test multiple graphs case.
- """
- prob = Net()
- concentration1_a = np.array([3.0]).astype(np.float32)
- concentration0_a = np.array([1.0]).astype(np.float32)
- concentration1_b = np.array([2.0]).astype(np.float32)
- concentration0_b = np.array([1.0]).astype(np.float32)
- ans = prob(Tensor(concentration1_b), Tensor(concentration0_b))
-
- total_concentration_a = concentration1_a + concentration0_a
- total_concentration_b = concentration1_b + concentration0_b
- log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
- log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
- expect_kl_loss = (log_normalization_b - log_normalization_a) \
- - (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
- - (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
- + (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
-
- beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
- expect_prob = beta_benchmark.pdf(expect_kl_loss).astype(np.float32)
-
- tol = 1e-6
- assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()
|