|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ create train dataset. """
-
- import os
- import re
- import numpy as np
- from mindspore.communication.management import init
- from mindspore.communication.management import get_rank
- from mindspore.communication.management import get_group_size
- from mindspore import Tensor
-
-
- def _count_unequal_element(data_expected, data_me, rtol, atol):
- assert data_expected.shape == data_me.shape
- total_count = len(data_expected.flatten())
- error = np.abs(data_expected - data_me)
- greater = np.greater(error, atol + np.abs(data_me) * rtol)
- loss_count = np.count_nonzero(greater)
- assert (loss_count / total_count) < rtol, \
- "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
- format(data_expected[greater], data_me[greater], error[greater])
-
-
- def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
- if np.any(np.isnan(data_expected)):
- assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
- elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
- _count_unequal_element(data_expected, data_me, rtol, atol)
- else:
- assert True
-
-
- def clean_all_ir_files(folder_path):
- if os.path.exists(folder_path):
- for file_name in os.listdir(folder_path):
- if file_name.endswith('.ir') or file_name.endswith('.dat') or file_name.endswith('.dot'):
- os.remove(os.path.join(folder_path, file_name))
-
-
- def find_newest_validateir_file(folder_path):
- validate_files = map(lambda f: os.path.join(folder_path, f),
- filter(lambda f: re.match(r'\d+_validate_\d+.ir', f), os.listdir(folder_path)))
- return max(validate_files, key=os.path.getctime)
-
-
- class FakeDataInitMode:
- RandomInit = 0
- OnesInit = 1
- UniqueInit = 2
- ZerosInit = 3
-
-
- class FakeData:
- def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
- num_classes=10, random_offset=0, use_parallel=False,
- fakedata_mode=FakeDataInitMode.RandomInit):
- self.size = size
- self.rank_batch_size = batch_size
- self.total_batch_size = self.rank_batch_size
- self.random_offset = random_offset
- self.image_size = image_size
- self.num_classes = num_classes
- self.rank_size = 1
- self.rank_id = 0
- self.batch_index = 0
- self.image_data_type = np.float32
- self.label_data_type = np.float32
- self.is_onehot = True
- self.fakedata_mode = fakedata_mode
-
- if use_parallel is True:
- init()
- self.rank_size = get_group_size()
- self.rank_id = get_rank()
-
- self.total_batch_size = self.rank_batch_size * self.rank_size
-
- assert (self.size % self.total_batch_size) == 0
-
- self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
-
- def get_dataset_size(self):
- return int(self.size / self.total_batch_size)
-
- def get_repeat_count(self):
- return 1
-
- def set_image_data_type(self, data_type):
- self.image_data_type = data_type
-
- def set_label_data_type(self, data_type):
- self.label_data_type = data_type
-
- def set_label_onehot(self, is_onehot=True):
- self.is_onehot = is_onehot
-
- def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
- _ = num_epochs
- return self
-
- def __getitem__(self, batch_index):
- if batch_index * self.total_batch_size >= len(self):
- raise IndexError("{} index out of range".format(self.__class__.__name__))
- rng_state = np.random.get_state()
- np.random.seed(batch_index + self.random_offset)
- if self.fakedata_mode == FakeDataInitMode.OnesInit:
- img = np.ones(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
- img = np.zeros(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
- total_size = 1
- for i in self.total_batch_data_size:
- total_size = total_size * i
- img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
- else:
- img = np.random.randn(*self.total_batch_data_size)
- target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
- np.random.set_state(rng_state)
- img = img[self.rank_id]
- target = target[self.rank_id]
- img_ret = img.astype(self.image_data_type)
- target_ret = target.astype(self.label_data_type)
- if self.is_onehot:
- target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
- target_onehot[np.arange(self.rank_batch_size), target] = 1
- target_ret = target_onehot.astype(self.label_data_type)
- return Tensor(img_ret), Tensor(target_ret)
-
- def __len__(self):
- return self.size
-
- def __iter__(self):
- self.batch_index = 0
- return self
-
- def reset(self):
- self.batch_index = 0
-
- def __next__(self):
- if self.batch_index * self.total_batch_size < len(self):
- data = self[self.batch_index]
- self.batch_index += 1
- return data
- raise StopIteration
|