|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- import mindspore.common.dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
-
- def construct(self, x):
- x, y = self.unique(x)
- return (x, y)
-
-
- class UniqueSquare(nn.Cell):
- def __init__(self):
- super(UniqueSquare, self).__init__()
- self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
- self.square = P.Square()
-
- def construct(self, x):
- x, _ = self.unique(x)
- return self.square(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_unique_ascend():
- x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
- unique = Net()
- output = unique(x)
- expect1 = np.array([1, 2, 3])
- expect2 = np.array([0, 0, 1, 1, 2, 2])
- assert (output[0].asnumpy() == expect1).all()
- assert (output[1].asnumpy() == expect2).all()
-
-
- @pytest.mark.level2
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_unique_square():
- x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
- net = UniqueSquare()
- output = net(x)
- expect1 = np.array([1, 4, 9])
- assert (output.asnumpy() == expect1).all()
|