|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- # """test_roc"""
-
- import numpy as np
- import pytest
- from mindspore import Tensor
- from mindspore.nn.metrics import ROC
-
-
- def test_roc():
- """test_roc_binary"""
- x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]]))
- y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]]))
- metric = ROC(pos_label=1)
- metric.clear()
- metric.update(x, y)
- fpr, tpr, thresholds = metric.eval()
-
- assert np.equal(fpr, np.array([0, 0.4, 0.4, 0.6, 1])).all()
- assert np.equal(tpr, np.array([0, 0, 0.25, 0.75, 1])).all()
- assert np.equal(thresholds, np.array([4, 3, 2, 1, 0])).all()
-
-
- def test_roc2():
- """test_roc_multiclass"""
- x = Tensor(np.array([[0.28, 0.55, 0.15, 0.05], [0.10, 0.20, 0.05, 0.05], [0.20, 0.05, 0.15, 0.05],
- [0.05, 0.05, 0.05, 0.75]]))
- y = Tensor(np.array([0, 1, 2, 3]))
- metric = ROC(class_num=4)
- metric.clear()
- metric.update(x, y)
- fpr, tpr, thresholds = metric.eval()
- list1 = [np.array([0., 0., 0.33333333, 0.66666667, 1.]), np.array([0., 0.33333333, 0.33333333, 1.]),
- np.array([0., 0.33333333, 1.]), np.array([0., 0., 1.])]
- list2 = [np.array([0., 1., 1., 1., 1.]), np.array([0., 0., 1., 1.]),
- np.array([0., 1., 1.]), np.array([0., 1., 1.])]
- list3 = [np.array([1.28, 0.28, 0.2, 0.1, 0.05]), np.array([1.55, 0.55, 0.2, 0.05]),
- np.array([1.15, 0.15, 0.05]), np.array([1.75, 0.75, 0.05])]
-
- assert fpr[0].shape == list1[0].shape
- assert np.equal(tpr[1], list2[1]).all()
- assert np.equal(thresholds[2], list3[2]).all()
-
-
- def test_roc_update1():
- x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
- metric = ROC()
- metric.clear()
-
- with pytest.raises(ValueError):
- metric.update(x)
-
-
- def test_roc_update2():
- x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
- y = Tensor(np.array([1, 0]))
- metric = ROC()
- metric.clear()
-
- with pytest.raises(ValueError):
- metric.update(x, y)
-
-
- def test_roc_init1():
- with pytest.raises(TypeError):
- ROC(pos_label=1.2)
-
-
- def test_roc_init2():
- with pytest.raises(TypeError):
- ROC(class_num="class_num")
-
-
- def test_roc_runtime():
- metric = ROC()
- metric.clear()
-
- with pytest.raises(RuntimeError):
- metric.eval()
|