|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_imagenet."""
-
- import time
- import argparse
- import ast
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore import nn
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.loss.loss import _Loss
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
- from mindspore.train.model import Model
- from mindspore.context import ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed
- from mindspore.communication.management import init, get_group_size, get_rank
-
- from src.dataset import create_dataset
- from src.dataset import create_dataset_cifar
- from src.lr_generator import get_lr
- from src.config import config_gpu
- from src.config import config_cpu
- from src.mobilenetV3 import mobilenet_v3_large
-
- set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
- parser.add_argument('--device_target', type=str, default="GPU", help='run device_target')
- parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distribute')
- args_opt = parser.parse_args()
-
- if args_opt.device_target == "GPU":
- context.set_context(mode=context.GRAPH_MODE,
- device_target="GPU",
- save_graphs=False)
- if args_opt.run_distribute:
- init()
- context.set_auto_parallel_context(device_num=get_group_size(),
- parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- elif args_opt.device_target == "CPU":
- context.set_context(mode=context.GRAPH_MODE,
- device_target="CPU",
- save_graphs=False)
- else:
- raise ValueError("Unsupported device_target.")
-
-
- class CrossEntropyWithLabelSmooth(_Loss):
- """
- CrossEntropyWith LabelSmooth.
-
- Args:
- smooth_factor (float): smooth factor for label smooth. Default is 0.
- num_classes (int): number of classes. Default is 1000.
-
- Returns:
- None.
-
- Examples:
- >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
- """
-
- def __init__(self, smooth_factor=0., num_classes=1000):
- super(CrossEntropyWithLabelSmooth, self).__init__()
- self.onehot = P.OneHot()
- self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
- self.off_value = Tensor(1.0 * smooth_factor /
- (num_classes - 1), mstype.float32)
- self.ce = nn.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean(False)
- self.cast = P.Cast()
-
- def construct(self, logit, label):
- one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
- self.on_value, self.off_value)
- out_loss = self.ce(logit, one_hot_label)
- out_loss = self.mean(out_loss, 0)
- return out_loss
-
-
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
-
- Examples:
- >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
- """
-
- def __init__(self, lr_init=None):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
-
- def epoch_begin(self, run_context):
- self.losses = []
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
-
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / cb_params.batch_num
- print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
- per_step_mseconds,
- np.mean(self.losses)))
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- step_mseconds = (time.time() - self.step_time) * 1000
- step_loss = cb_params.net_outputs
-
- if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
- step_loss = step_loss[0]
- if isinstance(step_loss, Tensor):
- step_loss = np.mean(step_loss.asnumpy())
-
- self.losses.append(step_loss)
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
-
- print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
- cb_params.cur_epoch_num -
- 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
- np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
-
-
- if __name__ == '__main__':
- config_ = None
- if args_opt.device_target == "GPU":
- config_ = config_gpu
- elif args_opt.device_target == "CPU":
- config_ = config_cpu
- else:
- raise ValueError("Unsupported device_target.")
- # train on device
- print("train args: ", args_opt)
- print("cfg: ", config_)
-
- # define net
- net = mobilenet_v3_large(num_classes=config_.num_classes)
- # define loss
- if config_.label_smooth > 0:
- loss = CrossEntropyWithLabelSmooth(
- smooth_factor=config_.label_smooth, num_classes=config_.num_classes)
- else:
- loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
- # define dataset
- epoch_size = config_.epoch_size
- if args_opt.device_target == "GPU":
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- config=config_,
- device_target=args_opt.device_target,
- repeat_num=1,
- batch_size=config_.batch_size,
- run_distribute=False)
- elif args_opt.device_target == "CPU":
- dataset = create_dataset_cifar(args_opt.dataset_path,
- do_train=True,
- batch_size=config_.batch_size)
- else:
- raise ValueError("Unsupported device_target.")
- step_size = dataset.get_dataset_size()
- # resume
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
- # define optimizer
- loss_scale = FixedLossScaleManager(
- config_.loss_scale, drop_overflow_update=False)
- lr = Tensor(get_lr(global_step=0,
- lr_init=0,
- lr_end=0,
- lr_max=config_.lr,
- warmup_epochs=config_.warmup_epochs,
- total_epochs=epoch_size,
- steps_per_epoch=step_size))
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_.momentum,
- config_.weight_decay, config_.loss_scale)
- # define model
- model = Model(net, loss_fn=loss, optimizer=opt,
- loss_scale_manager=loss_scale)
-
- cb = [Monitor(lr_init=lr.asnumpy())]
- if args_opt.run_distribute and args_opt.device_target != "CPU":
- ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
- else:
- ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + "/"
- if config_.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config_.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config_.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="mobilenetV3", directory=ckpt_save_dir, config=config_ck)
- cb += [ckpt_cb]
- # begine train
- model.train(epoch_size, dataset, callbacks=cb)
|